跳到内容

索引

ChatResponseMode #

基类:str, Enum

Agent._chat 中切换等待/流式传输的标志。

源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
45
46
47
48
49
class ChatResponseMode(str, Enum):
    """Flag toggling waiting/streaming in `Agent._chat`."""

    WAIT = "wait"
    STREAM = "stream"

AgentChatResponse dataclass #

代理聊天响应。

参数

名称 类型 描述 默认值
response str
''
sources List[ToolOutput]

内置可变序列。

如果未提供参数,构造函数将创建一个新的空列表。如果指定了参数,则参数必须是可迭代的。

<动态>
source_nodes List[NodeWithScore]

内置可变序列。

如果未提供参数,构造函数将创建一个新的空列表。如果指定了参数,则参数必须是可迭代的。

<动态>
is_dummy_stream bool
False
metadata Dict[str, Any] | None
None
源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
@dataclass
class AgentChatResponse:
    """Agent chat response."""

    response: str = ""
    sources: List[ToolOutput] = field(default_factory=list)
    source_nodes: List[NodeWithScore] = field(default_factory=list)
    is_dummy_stream: bool = False
    metadata: Optional[Dict[str, Any]] = None

    def set_source_nodes(self) -> None:
        if self.sources and not self.source_nodes:
            for tool_output in self.sources:
                if isinstance(tool_output.raw_output, (Response, StreamingResponse)):
                    self.source_nodes.extend(tool_output.raw_output.source_nodes)

    def __post_init__(self) -> None:
        self.set_source_nodes()

    def __str__(self) -> str:
        return self.response

    @property
    def response_gen(self) -> Generator[str, None, None]:
        """Used for fake streaming, i.e. with tool outputs."""
        if not self.is_dummy_stream:
            raise ValueError(
                "response_gen is only available for streaming responses. "
                "Set is_dummy_stream=True if you still want a generator."
            )

        for token in self.response.split(" "):
            yield token + " "
            time.sleep(0.1)

    async def async_response_gen(self) -> AsyncGenerator[str, None]:
        """Used for fake streaming, i.e. with tool outputs."""
        if not self.is_dummy_stream:
            raise ValueError(
                "response_gen is only available for streaming responses. "
                "Set is_dummy_stream=True if you still want a generator."
            )

        for token in self.response.split(" "):
            yield token + " "
            await asyncio.sleep(0.1)

response_gen property #

response_gen: Generator[str, None, None]

用于模拟流式传输,例如带有工具输出。

async_response_gen async #

async_response_gen() -> AsyncGenerator[str, None]

用于模拟流式传输,例如带有工具输出。

源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
87
88
89
90
91
92
93
94
95
96
97
async def async_response_gen(self) -> AsyncGenerator[str, None]:
    """Used for fake streaming, i.e. with tool outputs."""
    if not self.is_dummy_stream:
        raise ValueError(
            "response_gen is only available for streaming responses. "
            "Set is_dummy_stream=True if you still want a generator."
        )

    for token in self.response.split(" "):
        yield token + " "
        await asyncio.sleep(0.1)

StreamingAgentChatResponse dataclass #

流式聊天响应给用户并写入聊天历史。

参数

名称 类型 描述 默认值
response str
''
sources List[ToolOutput]

内置可变序列。

如果未提供参数,构造函数将创建一个新的空列表。如果指定了参数,则参数必须是可迭代的。

<动态>
chat_stream Generator[ChatResponse, None, None] | None
None
achat_stream AsyncGenerator[ChatResponse, None] | None
None
source_nodes List[NodeWithScore]

内置可变序列。

如果未提供参数,构造函数将创建一个新的空列表。如果指定了参数,则参数必须是可迭代的。

<动态>
unformatted_response str
''
queue Queue

创建一个具有给定最大大小的队列对象。

如果 maxsize <= 0,则队列大小是无限的。

<动态>
aqueue Queue | None
None
is_function bool | None
None
new_item_event Event | None
None
is_function_false_event Event | None
None
is_function_not_none_thread_event Event

实现事件对象的类。

事件管理一个标志,可以使用 set() 方法将其设置为 true,使用 clear() 方法将其重置为 false。wait() 方法会阻塞直到标志为 true。标志最初为 false。

<threading.Event at 0x7e52a82b40e0: unset>
is_writing_to_memory bool
True
异常 Exception | None
None
awrite_response_to_history_task Task | None
None
源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
@dataclass
class StreamingAgentChatResponse:
    """Streaming chat response to user and writing to chat history."""

    response: str = ""
    sources: List[ToolOutput] = field(default_factory=list)
    chat_stream: Optional[ChatResponseGen] = None
    achat_stream: Optional[ChatResponseAsyncGen] = None
    source_nodes: List[NodeWithScore] = field(default_factory=list)
    unformatted_response: str = ""
    queue: Queue = field(default_factory=Queue)
    aqueue: Optional[asyncio.Queue] = None
    # flag when chat message is a function call
    is_function: Optional[bool] = None
    # flag when processing done
    is_done = False
    # signal when a new item is added to the queue
    new_item_event: Optional[asyncio.Event] = None
    # NOTE: async code uses two events rather than one since it yields
    # control when waiting for queue item
    # signal when the OpenAI functions stop executing
    is_function_false_event: Optional[asyncio.Event] = None
    # signal when an OpenAI function is being executed
    is_function_not_none_thread_event: Event = field(default_factory=Event)
    is_writing_to_memory: bool = True
    # Track if an exception occurred
    exception: Optional[Exception] = None
    awrite_response_to_history_task: Optional[asyncio.Task] = None

    def set_source_nodes(self) -> None:
        if self.sources and not self.source_nodes:
            for tool_output in self.sources:
                if isinstance(tool_output.raw_output, (Response, StreamingResponse)):
                    self.source_nodes.extend(tool_output.raw_output.source_nodes)

    def __post_init__(self) -> None:
        self.set_source_nodes()

    def __str__(self) -> str:
        if self.is_done and not self.queue.empty() and not self.is_function:
            while self.queue.queue:
                delta = self.queue.queue.popleft()
                self.unformatted_response += delta
            self.response = self.unformatted_response.strip()
        return self.response

    def _ensure_async_setup(self) -> None:
        if self.aqueue is None:
            self.aqueue = asyncio.Queue()
        if self.new_item_event is None:
            self.new_item_event = asyncio.Event()
        if self.is_function_false_event is None:
            self.is_function_false_event = asyncio.Event()

    def put_in_queue(self, delta: Optional[str]) -> None:
        self.queue.put_nowait(delta)
        self.is_function_not_none_thread_event.set()

    def aput_in_queue(self, delta: Optional[str]) -> None:
        assert self.aqueue is not None
        assert self.new_item_event is not None

        self.aqueue.put_nowait(delta)
        self.new_item_event.set()

    @dispatcher.span
    def write_response_to_history(
        self,
        memory: BaseMemory,
        on_stream_end_fn: Optional[Callable] = None,
    ) -> None:
        if self.chat_stream is None:
            raise ValueError(
                "chat_stream is None. Cannot write to history without chat_stream."
            )

        # try/except to prevent hanging on error
        dispatcher.event(StreamChatStartEvent())
        try:
            final_text = ""
            for chat in self.chat_stream:
                self.is_function = is_function(chat.message)
                if chat.delta:
                    dispatcher.event(
                        StreamChatDeltaReceivedEvent(
                            delta=chat.delta,
                        )
                    )
                    self.put_in_queue(chat.delta)
                final_text += chat.delta or ""
            if self.is_function is not None:  # if loop has gone through iteration
                # NOTE: this is to handle the special case where we consume some of the
                # chat stream, but not all of it (e.g. in react agent)
                chat.message.content = final_text.strip()  # final message
                memory.put(chat.message)
        except Exception as e:
            dispatcher.event(StreamChatErrorEvent(exception=e))
            self.exception = e

            # This act as is_done events for any consumers waiting
            self.is_function_not_none_thread_event.set()

            # force the queue reader to see the exception
            self.put_in_queue("")
            raise
        dispatcher.event(StreamChatEndEvent())

        self.is_done = True

        # This act as is_done events for any consumers waiting
        self.is_function_not_none_thread_event.set()
        if on_stream_end_fn is not None and not self.is_function:
            on_stream_end_fn()

    @dispatcher.span
    async def awrite_response_to_history(
        self,
        memory: BaseMemory,
        on_stream_end_fn: Optional[Callable] = None,
    ) -> None:
        self._ensure_async_setup()
        assert self.aqueue is not None
        assert self.is_function_false_event is not None
        assert self.new_item_event is not None

        if self.achat_stream is None:
            raise ValueError(
                "achat_stream is None. Cannot asynchronously write to "
                "history without achat_stream."
            )

        # try/except to prevent hanging on error
        dispatcher.event(StreamChatStartEvent())
        try:
            final_text = ""
            async for chat in self.achat_stream:
                self.is_function = is_function(chat.message)
                if chat.delta:
                    dispatcher.event(
                        StreamChatDeltaReceivedEvent(
                            delta=chat.delta,
                        )
                    )
                    self.aput_in_queue(chat.delta)
                final_text += chat.delta or ""
                self.new_item_event.set()
                if self.is_function is False:
                    self.is_function_false_event.set()
            if self.is_function is not None:  # if loop has gone through iteration
                # NOTE: this is to handle the special case where we consume some of the
                # chat stream, but not all of it (e.g. in react agent)
                chat.message.content = final_text.strip()  # final message
                await memory.aput(chat.message)
        except Exception as e:
            dispatcher.event(StreamChatErrorEvent(exception=e))
            self.exception = e

            # These act as is_done events for any consumers waiting
            self.is_function_false_event.set()
            self.new_item_event.set()

            # force the queue reader to see the exception
            self.aput_in_queue("")
            raise
        dispatcher.event(StreamChatEndEvent())
        self.is_done = True

        # These act as is_done events for any consumers waiting
        self.is_function_false_event.set()
        self.new_item_event.set()
        if on_stream_end_fn is not None and not self.is_function:
            if iscoroutinefunction(
                on_stream_end_fn.func
                if isinstance(on_stream_end_fn, partial)
                else on_stream_end_fn
            ):
                await on_stream_end_fn()
            else:
                on_stream_end_fn()

    @property
    def response_gen(self) -> Generator[str, None, None]:
        if self.is_writing_to_memory:
            while not self.is_done or not self.queue.empty():
                if self.exception is not None:
                    raise self.exception

                try:
                    delta = self.queue.get(block=False)
                    self.unformatted_response += delta
                    yield delta
                except Empty:
                    # Queue is empty, but we're not done yet. Sleep for 0 secs to release the GIL and allow other threads to run.
                    time.sleep(0)
        else:
            if self.chat_stream is None:
                raise ValueError("chat_stream is None!")

            for chat_response in self.chat_stream:
                self.unformatted_response += chat_response.delta or ""
                yield chat_response.delta or ""
        self.response = self.unformatted_response.strip()

    async def async_response_gen(self) -> AsyncGenerator[str, None]:
        try:
            self._ensure_async_setup()
            assert self.aqueue is not None

            if self.is_writing_to_memory:
                while True:
                    if not self.aqueue.empty() or not self.is_done:
                        if self.exception is not None:
                            raise self.exception

                        try:
                            delta = await asyncio.wait_for(
                                self.aqueue.get(), timeout=0.1
                            )
                        except asyncio.TimeoutError:
                            if self.is_done:
                                break
                            continue
                        if delta is not None:
                            self.unformatted_response += delta
                            yield delta
                    else:
                        break
            else:
                if self.achat_stream is None:
                    raise ValueError("achat_stream is None!")

                async for chat_response in self.achat_stream:
                    self.unformatted_response += chat_response.delta or ""
                    yield chat_response.delta or ""
            self.response = self.unformatted_response.strip()
        finally:
            if self.awrite_response_to_history_task:
                # Make sure that the background task ran to completion, retrieve any exceptions
                await self.awrite_response_to_history_task
                self.awrite_response_to_history_task = (
                    None  # No need to keep the reference to the finished task
                )

    def print_response_stream(self) -> None:
        for token in self.response_gen:
            print(token, end="", flush=True)

    async def aprint_response_stream(self) -> None:
        async for token in self.async_response_gen():
            print(token, end="", flush=True)

BaseChatEngine #

基类:DispatcherSpanMixin, ABC

基础聊天引擎。

源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
class BaseChatEngine(DispatcherSpanMixin, ABC):
    """Base Chat Engine."""

    @abstractmethod
    def reset(self) -> None:
        """Reset conversation state."""

    @abstractmethod
    def chat(
        self, message: str, chat_history: Optional[List[ChatMessage]] = None
    ) -> AGENT_CHAT_RESPONSE_TYPE:
        """Main chat interface."""

    @abstractmethod
    def stream_chat(
        self, message: str, chat_history: Optional[List[ChatMessage]] = None
    ) -> StreamingAgentChatResponse:
        """Stream chat interface."""

    @abstractmethod
    async def achat(
        self, message: str, chat_history: Optional[List[ChatMessage]] = None
    ) -> AGENT_CHAT_RESPONSE_TYPE:
        """Async version of main chat interface."""

    @abstractmethod
    async def astream_chat(
        self, message: str, chat_history: Optional[List[ChatMessage]] = None
    ) -> StreamingAgentChatResponse:
        """Async version of main chat interface."""

    def chat_repl(self) -> None:
        """Enter interactive chat REPL."""
        print("===== Entering Chat REPL =====")
        print('Type "exit" to exit.\n')
        self.reset()
        message = input("Human: ")
        while message != "exit":
            response = self.chat(message)
            print(f"Assistant: {response}\n")
            message = input("Human: ")

    def streaming_chat_repl(self) -> None:
        """Enter interactive chat REPL with streaming responses."""
        print("===== Entering Chat REPL =====")
        print('Type "exit" to exit.\n')
        self.reset()
        message = input("Human: ")
        while message != "exit":
            response = self.stream_chat(message)
            print("Assistant: ", end="", flush=True)
            response.print_response_stream()
            print("\n")
            message = input("Human: ")

    @property
    @abstractmethod
    def chat_history(self) -> List[ChatMessage]:
        pass

reset abstractmethod #

reset() -> None

重置对话状态。

源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
358
359
360
@abstractmethod
def reset(self) -> None:
    """Reset conversation state."""

chat abstractmethod #

chat(message: str, chat_history: Optional[List[ChatMessage]] = None) -> AGENT_CHAT_RESPONSE_TYPE

主要聊天接口。

源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
362
363
364
365
366
@abstractmethod
def chat(
    self, message: str, chat_history: Optional[List[ChatMessage]] = None
) -> AGENT_CHAT_RESPONSE_TYPE:
    """Main chat interface."""

stream_chat abstractmethod #

stream_chat(message: str, chat_history: Optional[List[ChatMessage]] = None) -> StreamingAgentChatResponse

流式聊天接口。

源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
368
369
370
371
372
@abstractmethod
def stream_chat(
    self, message: str, chat_history: Optional[List[ChatMessage]] = None
) -> StreamingAgentChatResponse:
    """Stream chat interface."""

achat abstractmethod async #

achat(message: str, chat_history: Optional[List[ChatMessage]] = None) -> AGENT_CHAT_RESPONSE_TYPE

主要聊天接口的异步版本。

源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
374
375
376
377
378
@abstractmethod
async def achat(
    self, message: str, chat_history: Optional[List[ChatMessage]] = None
) -> AGENT_CHAT_RESPONSE_TYPE:
    """Async version of main chat interface."""

astream_chat abstractmethod async #

astream_chat(message: str, chat_history: Optional[List[ChatMessage]] = None) -> StreamingAgentChatResponse

主要聊天接口的异步版本。

源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
380
381
382
383
384
@abstractmethod
async def astream_chat(
    self, message: str, chat_history: Optional[List[ChatMessage]] = None
) -> StreamingAgentChatResponse:
    """Async version of main chat interface."""

chat_repl #

chat_repl() -> None

进入交互式聊天 REPL。

源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
386
387
388
389
390
391
392
393
394
395
def chat_repl(self) -> None:
    """Enter interactive chat REPL."""
    print("===== Entering Chat REPL =====")
    print('Type "exit" to exit.\n')
    self.reset()
    message = input("Human: ")
    while message != "exit":
        response = self.chat(message)
        print(f"Assistant: {response}\n")
        message = input("Human: ")

streaming_chat_repl #

streaming_chat_repl() -> None

进入具有流式响应的交互式聊天 REPL。

源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
397
398
399
400
401
402
403
404
405
406
407
408
def streaming_chat_repl(self) -> None:
    """Enter interactive chat REPL with streaming responses."""
    print("===== Entering Chat REPL =====")
    print('Type "exit" to exit.\n')
    self.reset()
    message = input("Human: ")
    while message != "exit":
        response = self.stream_chat(message)
        print("Assistant: ", end="", flush=True)
        response.print_response_stream()
        print("\n")
        message = input("Human: ")

ChatMode #

基类:str, Enum

聊天引擎模式。

源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
class ChatMode(str, Enum):
    """Chat Engine Modes."""

    SIMPLE = "simple"
    """Corresponds to `SimpleChatEngine`.

    Chat with LLM, without making use of a knowledge base.
    """

    CONDENSE_QUESTION = "condense_question"
    """Corresponds to `CondenseQuestionChatEngine`.

    First generate a standalone question from conversation context and last message,
    then query the query engine for a response.
    """

    CONTEXT = "context"
    """Corresponds to `ContextChatEngine`.

    First retrieve text from the index using the user's message, then use the context
    in the system prompt to generate a response.
    """

    CONDENSE_PLUS_CONTEXT = "condense_plus_context"
    """Corresponds to `CondensePlusContextChatEngine`.

    First condense a conversation and latest user message to a standalone question.
    Then build a context for the standalone question from a retriever,
    Then pass the context along with prompt and user message to LLM to generate a response.
    """

    REACT = "react"
    """Corresponds to `ReActAgent`.

    Use a ReAct agent loop with query engine tools.
    """

    OPENAI = "openai"
    """Corresponds to `OpenAIAgent`.

    Use an OpenAI function calling agent loop.

    NOTE: only works with OpenAI models that support function calling API.
    """

    BEST = "best"
    """Select the best chat engine based on the current LLM.

    Corresponds to `OpenAIAgent` if using an OpenAI model that supports
    function calling API, otherwise, corresponds to `ReActAgent`.
    """

SIMPLE class-attribute instance-attribute #

SIMPLE = 'simple'

对应于 SimpleChatEngine

与 LLM 聊天,不使用知识库。

CONDENSE_QUESTION class-attribute instance-attribute #

CONDENSE_QUESTION = 'condense_question'

对应于 CondenseQuestionChatEngine

首先从对话上下文和最后一条消息生成一个独立的问题,然后查询查询引擎以获得响应。

CONTEXT 类属性 实例属性 #

CONTEXT = 'context'

对应 ContextChatEngine

首先使用用户的消息从索引中检索文本,然后使用系统提示中的上下文生成响应。

CONDENSE_PLUS_CONTEXT 类属性 实例属性 #

CONDENSE_PLUS_CONTEXT = 'condense_plus_context'

对应 CondensePlusContextChatEngine

首先将对话和最新的用户消息浓缩为一个独立的问题。然后使用检索器为这个独立的问题构建上下文,接着将上下文以及提示和用户消息传递给 LLM 以生成响应。

REACT 类属性 实例属性 #

REACT = 'react'

对应 ReActAgent

使用带有查询引擎工具的 ReAct 代理循环。

OPENAI 类属性 实例属性 #

OPENAI = 'openai'

对应 OpenAIAgent

使用 OpenAI 函数调用代理循环。

注意:仅适用于支持函数调用 API 的 OpenAI 模型。

BEST 类属性 实例属性 #

BEST = 'best'

根据当前的 LLM 选择最佳的聊天引擎。

如果使用的是支持函数调用 API 的 OpenAI 模型,则对应于 OpenAIAgent;否则,对应于 ReActAgent

is_function #

is_function(message: ChatMessage) -> bool

用于处理来自 OpenAI 模型的 ChatMessage 响应的工具函数。

源代码位于 llama-index-core/llama_index/core/chat_engine/types.py
37
38
39
40
41
42
def is_function(message: ChatMessage) -> bool:
    """Utility for ChatMessage responses from OpenAI models."""
    return (
        "tool_calls" in message.additional_kwargs
        and len(message.additional_kwargs["tool_calls"]) > 0
    )