跳过内容

正确性

评估模块。

CorrectnessEvaluator #

继承自:BaseEvaluator

正确性评估器。

评估问答系统的正确性。除了查询字符串和响应字符串外,此评估器依赖于提供的参考答案。

它输出一个介于1到5之间的分数,其中1最差,5最好,并提供分数的理由。通过的定义是分数大于或等于给定阈值。

参数

名称 类型 描述 默认值
eval_template Optional[Union[BasePromptTemplate, str]]

评估提示的模板。

score_threshold float

通过评估的数值阈值,默认为 4.0。

4.0
源代码位于 llama-index-core/llama_index/core/evaluation/correctness.py
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
class CorrectnessEvaluator(BaseEvaluator):
    """
    Correctness evaluator.

    Evaluates the correctness of a question answering system.
    This evaluator depends on `reference` answer to be provided, in addition to the
    query string and response string.

    It outputs a score between 1 and 5, where 1 is the worst and 5 is the best,
    along with a reasoning for the score.
    Passing is defined as a score greater than or equal to the given threshold.

    Args:
        eval_template (Optional[Union[BasePromptTemplate, str]]):
            Template for the evaluation prompt.
        score_threshold (float): Numerical threshold for passing the evaluation,
            defaults to 4.0.

    """

    def __init__(
        self,
        llm: Optional[LLM] = None,
        eval_template: Optional[Union[BasePromptTemplate, str]] = None,
        score_threshold: float = 4.0,
        parser_function: Callable[
            [str], Tuple[Optional[float], Optional[str]]
        ] = default_parser,
    ) -> None:
        self._llm = llm or Settings.llm

        self._eval_template: BasePromptTemplate
        if isinstance(eval_template, str):
            self._eval_template = PromptTemplate(eval_template)
        else:
            self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE

        self._score_threshold = score_threshold
        self.parser_function = parser_function

    def _get_prompts(self) -> PromptDictType:
        """Get prompts."""
        return {
            "eval_template": self._eval_template,
        }

    def _update_prompts(self, prompts: PromptDictType) -> None:
        """Update prompts."""
        if "eval_template" in prompts:
            self._eval_template = prompts["eval_template"]

    async def aevaluate(
        self,
        query: Optional[str] = None,
        response: Optional[str] = None,
        contexts: Optional[Sequence[str]] = None,
        reference: Optional[str] = None,
        sleep_time_in_seconds: int = 0,
        **kwargs: Any,
    ) -> EvaluationResult:
        del kwargs  # Unused
        del contexts  # Unused

        await asyncio.sleep(sleep_time_in_seconds)

        if query is None or response is None:
            raise ValueError("query, and response must be provided")

        eval_response = await self._llm.apredict(
            prompt=self._eval_template,
            query=query,
            generated_answer=response,
            reference_answer=reference or "(NO REFERENCE ANSWER SUPPLIED)",
        )

        # Use the parser function
        score, reasoning = self.parser_function(eval_response)

        return EvaluationResult(
            query=query,
            response=response,
            passing=score >= self._score_threshold if score is not None else None,
            score=score,
            feedback=reasoning,
        )