跳到内容

忠实性

评估模块。

FaithfulnessEvaluator #

基类: BaseEvaluator

忠实度评估器。

评估响应是否忠实于上下文(即响应是否由上下文支持或是否是幻觉)。

此评估器仅考虑响应字符串和上下文字符串列表。

参数

名称 类型 描述 默认值
raise_error(bool)

当响应无效时是否引发错误。默认为 False。

必需
eval_template(Optional[Union[str, BasePromptTemplate]]

用于评估的模板。

必需
refine_template(Optional[Union[str, BasePromptTemplate]]

用于细化评估的模板。

必需
源代码位于 llama-index-core/llama_index/core/evaluation/faithfulness.py
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
class FaithfulnessEvaluator(BaseEvaluator):
    """
    Faithfulness evaluator.

    Evaluates whether a response is faithful to the contexts
    (i.e. whether the response is supported by the contexts or hallucinated.)

    This evaluator only considers the response string and the list of context strings.

    Args:
        raise_error(bool): Whether to raise an error when the response is invalid.
            Defaults to False.
        eval_template(Optional[Union[str, BasePromptTemplate]]):
            The template to use for evaluation.
        refine_template(Optional[Union[str, BasePromptTemplate]]):
            The template to use for refining the evaluation.

    """

    def __init__(
        self,
        llm: Optional[LLM] = None,
        raise_error: bool = False,
        eval_template: Optional[Union[str, BasePromptTemplate]] = None,
        refine_template: Optional[Union[str, BasePromptTemplate]] = None,
    ) -> None:
        """Init params."""
        self._llm = llm or Settings.llm
        self._raise_error = raise_error

        self._eval_template: BasePromptTemplate
        if isinstance(eval_template, str):
            self._eval_template = PromptTemplate(eval_template)
        if isinstance(eval_template, BasePromptTemplate):
            self._eval_template = eval_template
        else:
            model_name = self._llm.metadata.model_name
            self._eval_template = TEMPLATES_CATALOG.get(
                model_name, DEFAULT_EVAL_TEMPLATE
            )

        self._refine_template: BasePromptTemplate
        if isinstance(refine_template, str):
            self._refine_template = PromptTemplate(refine_template)
        else:
            self._refine_template = refine_template or DEFAULT_REFINE_TEMPLATE

    def _get_prompts(self) -> PromptDictType:
        """Get prompts."""
        return {
            "eval_template": self._eval_template,
            "refine_template": self._refine_template,
        }

    def _update_prompts(self, prompts: PromptDictType) -> None:
        """Update prompts."""
        if "eval_template" in prompts:
            self._eval_template = prompts["eval_template"]
        if "refine_template" in prompts:
            self._refine_template = prompts["refine_template"]

    async def aevaluate(
        self,
        query: str | None = None,
        response: str | None = None,
        contexts: Sequence[str] | None = None,
        sleep_time_in_seconds: int = 0,
        **kwargs: Any,
    ) -> EvaluationResult:
        """Evaluate whether the response is faithful to the contexts."""
        del kwargs  # Unused

        await asyncio.sleep(sleep_time_in_seconds)

        if contexts is None or response is None:
            raise ValueError("contexts and response must be provided")

        docs = [Document(text=context) for context in contexts]
        index = SummaryIndex.from_documents(docs)

        query_engine = index.as_query_engine(
            llm=self._llm,
            text_qa_template=self._eval_template,
            refine_template=self._refine_template,
        )
        response_obj = await query_engine.aquery(response)

        raw_response_txt = str(response_obj)

        if "yes" in raw_response_txt.lower():
            passing = True
        else:
            passing = False
            if self._raise_error:
                raise ValueError("The response is invalid")

        return EvaluationResult(
            query=query,
            response=response,
            contexts=contexts,
            passing=passing,
            score=1.0 if passing else 0.0,
            feedback=raw_response_txt,
        )

aevaluate async #

aevaluate(query: str | None = None, response: str | None = None, contexts: Sequence[str] | None = None, sleep_time_in_seconds: int = 0, **kwargs: Any) -> EvaluationResult

评估响应是否忠实于上下文。

源代码位于 llama-index-core/llama_index/core/evaluation/faithfulness.py
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
async def aevaluate(
    self,
    query: str | None = None,
    response: str | None = None,
    contexts: Sequence[str] | None = None,
    sleep_time_in_seconds: int = 0,
    **kwargs: Any,
) -> EvaluationResult:
    """Evaluate whether the response is faithful to the contexts."""
    del kwargs  # Unused

    await asyncio.sleep(sleep_time_in_seconds)

    if contexts is None or response is None:
        raise ValueError("contexts and response must be provided")

    docs = [Document(text=context) for context in contexts]
    index = SummaryIndex.from_documents(docs)

    query_engine = index.as_query_engine(
        llm=self._llm,
        text_qa_template=self._eval_template,
        refine_template=self._refine_template,
    )
    response_obj = await query_engine.aquery(response)

    raw_response_txt = str(response_obj)

    if "yes" in raw_response_txt.lower():
        passing = True
    else:
        passing = False
        if self._raise_error:
            raise ValueError("The response is invalid")

    return EvaluationResult(
        query=query,
        response=response,
        contexts=contexts,
        passing=passing,
        score=1.0 if passing else 0.0,
        feedback=raw_response_txt,
    )