跳到内容

类 OpenAI

OpenAILike #

基类: OpenAI

OpenAILike LLM。

OpenAILike 是对 OpenAI 模型的轻量级封装,使其兼容提供 OpenAI 兼容 API 的第三方工具。

参数

名称 类型 描述 默认值
model str

用于 API 的模型。

DEFAULT_OPENAI_MODEL
api_base str

用于 API 的基本 URL。默认为 "https://api.openai.com/v1"。

is_chat_model bool

模型是否使用聊天或补全端点。默认为 False。

必需
is_function_calling_model bool

模型是否支持通过 API 调用 OpenAI 函数/工具。默认为 False。

必需
api_key str

用于 API 的 API 密钥。如果您的 API 不需要 API 密钥,请将其设置为随机字符串。

context_window int

用于 API 的上下文窗口。为获得最佳体验,请将其设置为您模型的上下文窗口。默认为 3900。

必需
max_tokens int

要生成的最大 Token 数。默认为 None。

temperature float

用于 API 的温度。默认为 0.1。

DEFAULT_TEMPERATURE
additional_kwargs dict

指定请求体中的附加参数。

max_retries int

API 调用失败时重试的次数。默认为 3。

3
timeout float

在 API 调用失败前等待的秒数。默认为 60.0。

60.0
reuse_client bool

在请求之间复用 OpenAI 客户端。默认为 True。

True
default_headers dict

覆盖 API 请求的默认头部。默认为 None。

http_client Client

传入您自己的 httpx.Client 实例。默认为 None。

async_http_client AsyncClient

传入您自己的 httpx.AsyncClient 实例。默认为 None。

示例

pip install llama-index-llms-openai-like

from llama_index.llms.openai_like import OpenAILike

llm = OpenAILike(
    model="my model",
    api_base="https://hostname.com/v1",
    api_key="fake",
    context_window=128000,
    is_chat_model=True,
    is_function_calling_model=False,
)

response = llm.complete("Hello World!")
print(str(response))
源代码位于 llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
class OpenAILike(OpenAI):
    """
    OpenaAILike LLM.

    OpenAILike is a thin wrapper around the OpenAI model that makes it compatible with
    3rd party tools that provide an openai-compatible api.

    Args:
        model (str):
            The model to use for the api.
        api_base (str):
            The base url to use for the api.
            Defaults to "https://api.openai.com/v1".
        is_chat_model (bool):
            Whether the model uses the chat or completion endpoint.
            Defaults to False.
        is_function_calling_model (bool):
            Whether the model supports OpenAI function calling/tools over the API.
            Defaults to False.
        api_key (str):
            The api key to use for the api.
            Set this to some random string if your API does not require an api key.
        context_window (int):
            The context window to use for the api. Set this to your model's context window for the best experience.
            Defaults to 3900.
        max_tokens (int):
            The max number of tokens to generate.
            Defaults to None.
        temperature (float):
            The temperature to use for the api.
            Default is 0.1.
        additional_kwargs (dict):
            Specify additional parameters to the request body.
        max_retries (int):
            How many times to retry the API call if it fails.
            Defaults to 3.
        timeout (float):
            How long to wait, in seconds, for an API call before failing.
            Defaults to 60.0.
        reuse_client (bool):
            Reuse the OpenAI client between requests.
            Defaults to True.
        default_headers (dict):
            Override the default headers for API requests.
            Defaults to None.
        http_client (httpx.Client):
            Pass in your own httpx.Client instance.
            Defaults to None.
        async_http_client (httpx.AsyncClient):
            Pass in your own httpx.AsyncClient instance.
            Defaults to None.

    Examples:
        `pip install llama-index-llms-openai-like`

        ```python
        from llama_index.llms.openai_like import OpenAILike

        llm = OpenAILike(
            model="my model",
            api_base="https://hostname.com/v1",
            api_key="fake",
            context_window=128000,
            is_chat_model=True,
            is_function_calling_model=False,
        )

        response = llm.complete("Hello World!")
        print(str(response))
        ```

    """

    context_window: int = Field(
        default=DEFAULT_CONTEXT_WINDOW,
        description=LLMMetadata.model_fields["context_window"].description,
    )
    is_chat_model: bool = Field(
        default=False,
        description=LLMMetadata.model_fields["is_chat_model"].description,
    )
    is_function_calling_model: bool = Field(
        default=False,
        description=LLMMetadata.model_fields["is_function_calling_model"].description,
    )
    tokenizer: Union[Tokenizer, str, None] = Field(
        default=None,
        description=(
            "An instance of a tokenizer object that has an encode method, or the name"
            " of a tokenizer model from Hugging Face. If left as None, then this"
            " disables inference of max_tokens."
        ),
    )

    @property
    def metadata(self) -> LLMMetadata:
        return LLMMetadata(
            context_window=self.context_window,
            num_output=self.max_tokens or -1,
            is_chat_model=self.is_chat_model,
            is_function_calling_model=self.is_function_calling_model,
            model_name=self.model,
        )

    @property
    def _tokenizer(self) -> Optional[Tokenizer]:
        if isinstance(self.tokenizer, str):
            return AutoTokenizer.from_pretrained(self.tokenizer)
        return self.tokenizer

    @classmethod
    def class_name(cls) -> str:
        return "OpenAILike"

    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        """Complete the prompt."""
        if not formatted:
            prompt = self.completion_to_prompt(prompt)

        return super().complete(prompt, **kwargs)

    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        """Stream complete the prompt."""
        if not formatted:
            prompt = self.completion_to_prompt(prompt)

        return super().stream_complete(prompt, **kwargs)

    def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
        """Chat with the model."""
        if not self.metadata.is_chat_model:
            prompt = self.messages_to_prompt(messages)
            completion_response = self.complete(prompt, formatted=True, **kwargs)
            return completion_response_to_chat_response(completion_response)

        return super().chat(messages, **kwargs)

    def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseGen:
        if not self.metadata.is_chat_model:
            prompt = self.messages_to_prompt(messages)
            completion_response = self.stream_complete(prompt, formatted=True, **kwargs)
            return stream_completion_response_to_chat_response(completion_response)

        return super().stream_chat(messages, **kwargs)

    # -- Async methods --

    async def acomplete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        """Complete the prompt."""
        if not formatted:
            prompt = self.completion_to_prompt(prompt)

        return await super().acomplete(prompt, **kwargs)

    async def astream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        """Stream complete the prompt."""
        if not formatted:
            prompt = self.completion_to_prompt(prompt)

        return await super().astream_complete(prompt, **kwargs)

    async def achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        """Chat with the model."""
        if not self.metadata.is_chat_model:
            prompt = self.messages_to_prompt(messages)
            completion_response = await self.acomplete(prompt, formatted=True, **kwargs)
            return completion_response_to_chat_response(completion_response)

        return await super().achat(messages, **kwargs)

    async def astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        if not self.metadata.is_chat_model:
            prompt = self.messages_to_prompt(messages)
            completion_response = await self.astream_complete(
                prompt, formatted=True, **kwargs
            )
            return async_stream_completion_response_to_chat_response(
                completion_response
            )

        return await super().astream_chat(messages, **kwargs)

complete #

complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponse

补全 Prompt。

源代码位于 llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
138
139
140
141
142
143
144
145
def complete(
    self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
    """Complete the prompt."""
    if not formatted:
        prompt = self.completion_to_prompt(prompt)

    return super().complete(prompt, **kwargs)

stream_complete #

stream_complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponseGen

流式补全 Prompt。

源代码位于 llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
147
148
149
150
151
152
153
154
def stream_complete(
    self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
    """Stream complete the prompt."""
    if not formatted:
        prompt = self.completion_to_prompt(prompt)

    return super().stream_complete(prompt, **kwargs)

chat #

chat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse

与模型聊天。

源代码位于 llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
156
157
158
159
160
161
162
163
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
    """Chat with the model."""
    if not self.metadata.is_chat_model:
        prompt = self.messages_to_prompt(messages)
        completion_response = self.complete(prompt, formatted=True, **kwargs)
        return completion_response_to_chat_response(completion_response)

    return super().chat(messages, **kwargs)

acomplete async #

acomplete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponse

补全 Prompt。

源代码位于 llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
177
178
179
180
181
182
183
184
async def acomplete(
    self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
    """Complete the prompt."""
    if not formatted:
        prompt = self.completion_to_prompt(prompt)

    return await super().acomplete(prompt, **kwargs)

astream_complete async #

astream_complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponseAsyncGen

流式补全 Prompt。

源代码位于 llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
186
187
188
189
190
191
192
193
async def astream_complete(
    self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseAsyncGen:
    """Stream complete the prompt."""
    if not formatted:
        prompt = self.completion_to_prompt(prompt)

    return await super().astream_complete(prompt, **kwargs)

achat async #

achat(messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse

与模型聊天。

源代码位于 llama-index-integrations/llms/llama-index-llms-openai-like/llama_index/llms/openai_like/base.py
195
196
197
198
199
200
201
202
203
204
async def achat(
    self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponse:
    """Chat with the model."""
    if not self.metadata.is_chat_model:
        prompt = self.messages_to_prompt(messages)
        completion_response = await self.acomplete(prompt, formatted=True, **kwargs)
        return completion_response_to_chat_response(completion_response)

    return await super().achat(messages, **kwargs)