跳至内容

PaLM

PaLM #

基础类: CustomLLM

PaLM LLM。

示例

pip install llama-index-llms-palm

import google.generativeai as palm

# API key for PaLM
palm_api_key = "YOUR_API_KEY_HERE"

# List all models that support text generation
models = [
    m
    for m in palm.list_models()
    if "generateText" in m.supported_generation_methods
]
model = models[0].name
print(model)

# Start using our PaLM LLM abstraction
from llama_index.llms.palm import PaLM

# Create an instance of the PaLM class with the API key
llm = PaLM(model_name=model, api_key=palm_api_key)

# Use the complete method to generate text based on a prompt
response = llm.complete("Your prompt text here.")
print(str(response))
源码位于 llama-index-integrations/llms/llama-index-llms-palm/llama_index/llms/palm/base.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
class PaLM(CustomLLM):
    """
    PaLM LLM.

    Examples:
        `pip install llama-index-llms-palm`

        ```python
        import google.generativeai as palm

        # API key for PaLM
        palm_api_key = "YOUR_API_KEY_HERE"

        # List all models that support text generation
        models = [
            m
            for m in palm.list_models()
            if "generateText" in m.supported_generation_methods
        ]
        model = models[0].name
        print(model)

        # Start using our PaLM LLM abstraction
        from llama_index.llms.palm import PaLM

        # Create an instance of the PaLM class with the API key
        llm = PaLM(model_name=model, api_key=palm_api_key)

        # Use the complete method to generate text based on a prompt
        response = llm.complete("Your prompt text here.")
        print(str(response))
        ```

    """

    model_name: str = Field(
        default=DEFAULT_PALM_MODEL, description="The PaLM model to use."
    )
    num_output: int = Field(
        default=DEFAULT_NUM_OUTPUTS,
        description="The number of tokens to generate.",
        gt=0,
    )
    generate_kwargs: dict = Field(
        default_factory=dict, description="Kwargs for generation."
    )

    _model: Any = PrivateAttr()

    def __init__(
        self,
        api_key: Optional[str] = None,
        model_name: Optional[str] = DEFAULT_PALM_MODEL,
        num_output: Optional[int] = None,
        callback_manager: Optional[CallbackManager] = None,
        system_prompt: Optional[str] = None,
        messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
        completion_to_prompt: Optional[Callable[[str], str]] = None,
        pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
        output_parser: Optional[BaseOutputParser] = None,
        **generate_kwargs: Any,
    ) -> None:
        """Initialize params."""
        api_key = api_key or os.environ.get("PALM_API_KEY")
        palm.configure(api_key=api_key)

        models = palm.list_models()
        models_dict = {m.name: m for m in models}
        if model_name not in models_dict:
            raise ValueError(
                f"Model name {model_name} not found in {models_dict.keys()}"
            )

        model_name = model_name
        model = models_dict[model_name]

        # get num_output
        num_output = num_output or model.output_token_limit

        generate_kwargs = generate_kwargs or {}
        super().__init__(
            model_name=model_name,
            num_output=num_output,
            generate_kwargs=generate_kwargs,
            callback_manager=callback_manager,
            system_prompt=system_prompt,
            messages_to_prompt=messages_to_prompt,
            completion_to_prompt=completion_to_prompt,
            pydantic_program_mode=pydantic_program_mode,
            output_parser=output_parser,
        )
        self._model = model

    @classmethod
    def class_name(cls) -> str:
        return "PaLM_llm"

    @property
    def metadata(self) -> LLMMetadata:
        """Get LLM metadata."""
        # TODO: google palm actually separates input and output token limits
        total_tokens = self._model.input_token_limit + self.num_output
        return LLMMetadata(
            context_window=total_tokens,
            num_output=self.num_output,
            model_name=self.model_name,
        )

    @llm_completion_callback()
    def complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponse:
        """
        Predict the answer to a query.

        Args:
            prompt (str): Prompt to use for prediction.

        Returns:
            Tuple[str, str]: Tuple of the predicted answer and the formatted prompt.

        """
        completion = palm.generate_text(
            model=self.model_name,
            prompt=prompt,
            **kwargs,
        )
        return CompletionResponse(text=completion.result, raw=completion.candidates[0])

    @llm_completion_callback()
    def stream_complete(
        self, prompt: str, formatted: bool = False, **kwargs: Any
    ) -> CompletionResponseGen:
        """
        Stream the answer to a query.

        NOTE: this is a beta feature. Will try to build or use
        better abstractions about response handling.

        Args:
            prompt (str): Prompt to use for prediction.

        Returns:
            str: The predicted answer.

        """
        raise NotImplementedError(
            "PaLM does not support streaming completion in LlamaIndex currently."
        )

metadata property #

metadata: LLMMetadata

获取 LLM 元数据。

complete #

complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponse

预测查询的答案。

参数

名称 类型 描述 默认值
prompt str

用于预测的 prompt。

必需

返回值

类型 描述
CompletionResponse

Tuple[str, str]: 预测答案和格式化 prompt 的元组。

源码位于 llama-index-integrations/llms/llama-index-llms-palm/llama_index/llms/palm/base.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
@llm_completion_callback()
def complete(
    self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
    """
    Predict the answer to a query.

    Args:
        prompt (str): Prompt to use for prediction.

    Returns:
        Tuple[str, str]: Tuple of the predicted answer and the formatted prompt.

    """
    completion = palm.generate_text(
        model=self.model_name,
        prompt=prompt,
        **kwargs,
    )
    return CompletionResponse(text=completion.result, raw=completion.candidates[0])

stream_complete #

stream_complete(prompt: str, formatted: bool = False, **kwargs: Any) -> CompletionResponseGen

流式传输查询的答案。

注意:这是一个 Beta 功能。我们将尝试构建或使用更好的抽象来处理响应。

参数

名称 类型 描述 默认值
prompt str

用于预测的 prompt。

必需

返回值

名称 类型 描述
str CompletionResponseGen

预测的答案。

源码位于 llama-index-integrations/llms/llama-index-llms-palm/llama_index/llms/palm/base.py
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
@llm_completion_callback()
def stream_complete(
    self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
    """
    Stream the answer to a query.

    NOTE: this is a beta feature. Will try to build or use
    better abstractions about response handling.

    Args:
        prompt (str): Prompt to use for prediction.

    Returns:
        str: The predicted answer.

    """
    raise NotImplementedError(
        "PaLM does not support streaming completion in LlamaIndex currently."
    )