跳到内容

Huggingface

HuggingFaceMultiModal #

基类: MultiModalLLM

这个类提供了与HuggingFace多模态模型交互的基础实现。它处理模型初始化、输入准备以及基于文本/图像的交互。

源代码位于 llama-index-integrations/multi_modal_llms/llama-index-multi-modal-llms-huggingface/llama_index/multi_modal_llms/huggingface/base.py
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
class HuggingFaceMultiModal(MultiModalLLM):
    """
    This class provides a base implementation for interacting with HuggingFace multi-modal models.
    It handles model initialization, input preparation, and text/image-based interaction.
    """

    model_name: str = Field(
        description="The name of the Hugging Face multi-modal model to use."
    )
    device: str = Field(
        default="cuda" if torch.cuda.is_available() else "cpu",
        description="The device to run the model on.",
    )
    device_map: Union[Dict[str, Any], str] = Field(
        default="auto",
        description="Tell HF accelerate where to put each layer of the model. In auto mode, HF accelerate determines this on it's own",
    )
    torch_dtype: Any = Field(
        default=torch.float16 if torch.cuda.is_available() else torch.float32,
        description="The torch dtype to use.",
    )
    trust_remote_code: bool = Field(
        default=False,
        description="Whether to trust remote code when loading the model.",
    )
    context_window: int = Field(
        default=DEFAULT_CONTEXT_WINDOW,
        description="The maximum number of context tokens for the model.",
    )
    max_new_tokens: int = Field(
        default=DEFAULT_NUM_OUTPUTS,
        description="The maximum number of new tokens to generate.",
    )
    temperature: float = Field(
        default=0.0, description="The temperature to use for sampling."
    )
    additional_kwargs: Dict[str, Any] = Field(
        default_factory=dict,
        description="Additional kwargs for model initialization and generation.",
    )

    _model: Any = PrivateAttr()
    _processor: Any = PrivateAttr()
    _config: Any = PrivateAttr()

    def __init__(self, **kwargs: Any) -> None:
        """
        Initializes the HuggingFace multi-modal model and processor based on the provided configuration.
        """
        super().__init__(**kwargs)
        try:
            # Load model configuration
            self._config = AutoConfig.from_pretrained(
                self.model_name, trust_remote_code=True
            )
            architecture = self._config.architectures[0]
            AutoModelClass = AutoModelForCausalLM  # Default model class

            # Special cases for specific model architectures
            if "Qwen2VLForConditionalGeneration" in architecture:
                AutoModelClass = Qwen2VLForConditionalGeneration
            if "PaliGemmaForConditionalGeneration" in architecture:
                AutoModelClass = PaliGemmaForConditionalGeneration
            if "MllamaForConditionalGeneration" in architecture:
                AutoModelClass = MllamaForConditionalGeneration

            # Load the model based on the architecture
            self._model = AutoModelClass.from_pretrained(
                self.model_name,
                device_map=self.device_map,
                torch_dtype=self.torch_dtype,
                trust_remote_code=self.trust_remote_code,
                **self.additional_kwargs,
            )
            # Load the processor (for handling text and image inputs)
            self._processor = AutoProcessor.from_pretrained(
                self.model_name, trust_remote_code=self.trust_remote_code
            )
        except Exception as e:
            raise ValueError(f"Failed to initialize the model and processor: {e!s}")

    @classmethod
    def class_name(cls) -> str:
        """Returns the class name for the model."""
        return "HuggingFace_multi_modal_llm"

    @property
    def metadata(self) -> MultiModalLLMMetadata:
        """Multi Modal LLM metadata."""
        return MultiModalLLMMetadata(
            context_window=self.context_window,
            num_output=self.max_new_tokens,
            model_name=self.model_name,
        )

    # each unique model will override it
    def _prepare_messages(
        self, messages: Sequence[ChatMessage], image_documents: Sequence[ImageDocument]
    ) -> Dict[str, Any]:
        """
        Abstract method: Prepares input messages and image documents for the model.
        This must be overridden by subclasses.
        """
        raise NotImplementedError

    # each unique model will override it
    def _generate(self, prepared_inputs: Dict[str, Any]) -> str:
        """
        Abstract method: Generates text based on the prepared inputs.
        This must be overridden by subclasses.
        """
        raise NotImplementedError

    # some models will override it, some won't
    def complete(
        self, prompt: str, image_documents: Sequence[ImageDocument], **kwargs: Any
    ) -> CompletionResponse:
        """
        Completes a task based on a text prompt and optional images.
        The method prepares inputs and generates the corresponding text.
        """
        prepared_inputs = self._prepare_messages(
            [ChatMessage(role="user", content=prompt)], image_documents
        )
        generated_text = self._generate(prepared_inputs)
        return CompletionResponse(text=generated_text)

    # some models will override it, some won't
    def chat(
        self,
        messages: Sequence[ChatMessage],
        image_documents: Sequence[ImageDocument],
        **kwargs: Any,
    ) -> ChatResponse:
        """
        Engages in a chat-style interaction by processing a sequence of messages and optional images.
        """
        prepared_inputs = self._prepare_messages(messages, image_documents)
        generated_text = self._generate(prepared_inputs)
        return ChatResponse(
            message=ChatMessage(role="assistant", content=generated_text),
            raw={"model_output": generated_text},
        )

    async def astream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        raise NotImplementedError(
            "HuggingFaceMultiModal does not support async streaming chat yet."
        )

    async def stream_chat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponseAsyncGen:
        raise NotImplementedError(
            "HuggingFaceMultiModal does not support streaming chat yet."
        )

    async def astream_complete(
        self, prompt: str, image_documents: Sequence[ImageNode], **kwargs: Any
    ) -> CompletionResponseAsyncGen:
        raise NotImplementedError(
            "HuggingFaceMultiModal does not support async streaming completion yet."
        )

    async def acomplete(
        self, prompt: str, image_documents: Sequence[ImageNode], **kwargs: Any
    ) -> CompletionResponse:
        raise NotImplementedError(
            "HuggingFaceMultiModal does not support async completion yet."
        )

    async def achat(
        self, messages: Sequence[ChatMessage], **kwargs: Any
    ) -> ChatResponse:
        raise NotImplementedError(
            "HuggingFaceMultiModal does not support async chat yet."
        )

    async def stream_complete(
        self, prompt: str, image_documents: Sequence[ImageNode], **kwargs: Any
    ) -> CompletionResponse:
        raise NotImplementedError(
            "HuggingFaceMultiModal does not support async completion yet."
        )

    # we check the model architecture here
    @classmethod
    def from_model_name(cls, model_name: str, **kwargs: Any) -> "HuggingFaceMultiModal":
        """Checks the model architecture and initializes the model."""
        config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
        # we check the architecture because users would want to use their own finetuned versions of VLMs
        architecture = config.architectures[0]

        if "Phi3VForCausalLM" in architecture:
            return Phi35VisionMultiModal(model_name=model_name, **kwargs)
        elif "Florence2ForConditionalGeneration" in architecture:
            return Florence2MultiModal(model_name=model_name, **kwargs)
        elif "Qwen2VLForConditionalGeneration" in architecture:
            return Qwen2VisionMultiModal(model_name=model_name, **kwargs)
        elif "PaliGemmaForConditionalGeneration" in architecture:
            return PaliGemmaMultiModal(model_name=model_name, **kwargs)
        elif "MllamaForConditionalGeneration" in architecture:
            return LlamaMultiModal(model_name=model_name, **kwargs)
        else:
            raise ValueError(
                f"Unsupported model architecture: {architecture}. "
                f"We currently support: {', '.join(SUPPORTED_VLMS)}"
            )

metadata property #

多模态大语言模型元数据。

class_name classmethod #

class_name() -> str

返回模型的类名。

源代码位于 llama-index-integrations/multi_modal_llms/llama-index-multi-modal-llms-huggingface/llama_index/multi_modal_llms/huggingface/base.py
120
121
122
123
@classmethod
def class_name(cls) -> str:
    """Returns the class name for the model."""
    return "HuggingFace_multi_modal_llm"

complete #

complete(prompt: str, image_documents: Sequence[ImageDocument], **kwargs: Any) -> CompletionResponse

根据文本提示词和可选图像完成任务。该方法准备输入并生成相应的文本。

源代码位于 llama-index-integrations/multi_modal_llms/llama-index-multi-modal-llms-huggingface/llama_index/multi_modal_llms/huggingface/base.py
153
154
155
156
157
158
159
160
161
162
163
164
def complete(
    self, prompt: str, image_documents: Sequence[ImageDocument], **kwargs: Any
) -> CompletionResponse:
    """
    Completes a task based on a text prompt and optional images.
    The method prepares inputs and generates the corresponding text.
    """
    prepared_inputs = self._prepare_messages(
        [ChatMessage(role="user", content=prompt)], image_documents
    )
    generated_text = self._generate(prepared_inputs)
    return CompletionResponse(text=generated_text)

chat #

chat(messages: Sequence[ChatMessage], image_documents: Sequence[ImageDocument], **kwargs: Any) -> ChatResponse

通过处理一系列消息和可选图像进行聊天式交互。

源代码位于 llama-index-integrations/multi_modal_llms/llama-index-multi-modal-llms-huggingface/llama_index/multi_modal_llms/huggingface/base.py
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
def chat(
    self,
    messages: Sequence[ChatMessage],
    image_documents: Sequence[ImageDocument],
    **kwargs: Any,
) -> ChatResponse:
    """
    Engages in a chat-style interaction by processing a sequence of messages and optional images.
    """
    prepared_inputs = self._prepare_messages(messages, image_documents)
    generated_text = self._generate(prepared_inputs)
    return ChatResponse(
        message=ChatMessage(role="assistant", content=generated_text),
        raw={"model_output": generated_text},
    )

from_model_name classmethod #

from_model_name(model_name: str, **kwargs: Any) -> HuggingFaceMultiModal

检查模型架构并初始化模型。

源代码位于 llama-index-integrations/multi_modal_llms/llama-index-multi-modal-llms-huggingface/llama_index/multi_modal_llms/huggingface/base.py
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
@classmethod
def from_model_name(cls, model_name: str, **kwargs: Any) -> "HuggingFaceMultiModal":
    """Checks the model architecture and initializes the model."""
    config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
    # we check the architecture because users would want to use their own finetuned versions of VLMs
    architecture = config.architectures[0]

    if "Phi3VForCausalLM" in architecture:
        return Phi35VisionMultiModal(model_name=model_name, **kwargs)
    elif "Florence2ForConditionalGeneration" in architecture:
        return Florence2MultiModal(model_name=model_name, **kwargs)
    elif "Qwen2VLForConditionalGeneration" in architecture:
        return Qwen2VisionMultiModal(model_name=model_name, **kwargs)
    elif "PaliGemmaForConditionalGeneration" in architecture:
        return PaliGemmaMultiModal(model_name=model_name, **kwargs)
    elif "MllamaForConditionalGeneration" in architecture:
        return LlamaMultiModal(model_name=model_name, **kwargs)
    else:
        raise ValueError(
            f"Unsupported model architecture: {architecture}. "
            f"We currently support: {', '.join(SUPPORTED_VLMS)}"
        )