跳到内容

多文档代理

MultiDocumentAgentsPack #

基类: BaseLlamaPack

多文档代理包。

给定一组文档,构建我们的多文档代理架构。 - 在代理文档上设置一个文档代理(具备问答和总结能力) - 在文档代理之上设置一个顶层代理

源代码位于 llama-index-packs/llama-index-packs-multi-document-agents/llama_index/packs/multi_document_agents/base.py
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
class MultiDocumentAgentsPack(BaseLlamaPack):
    """
    Multi-document Agents pack.

    Given a set of documents, build our multi-document agents architecture.
    - setup a document agent over agent doc (capable of QA and summarization)
    - setup a top-level agent over doc agents

    """

    def __init__(
        self,
        docs: List[Document],
        doc_titles: List[str],
        doc_descriptions: List[str],
        **kwargs: Any,
    ) -> None:
        """Init params."""
        self.node_parser = SentenceSplitter()
        self.llm = OpenAI(temperature=0, model="gpt-3.5-turbo")
        Settings.llm = self.llm

        # Build agents dictionary
        self.agents = {}

        # this is for the baseline
        all_nodes = []

        # build agent for each document
        for idx, doc in enumerate(docs):
            doc_title = doc_titles[idx]
            doc_description = doc_descriptions[idx]
            nodes = self.node_parser.get_nodes_from_documents([doc])
            all_nodes.extend(nodes)

            # build vector index
            vector_index = VectorStoreIndex(nodes)

            # build summary index
            summary_index = SummaryIndex(nodes)
            # define query engines
            vector_query_engine = vector_index.as_query_engine()
            summary_query_engine = summary_index.as_query_engine()

            # define tools
            query_engine_tools = [
                QueryEngineTool(
                    query_engine=vector_query_engine,
                    metadata=ToolMetadata(
                        name="vector_tool",
                        description=(
                            "Useful for questions related to specific aspects of"
                            f" {doc_title}."
                        ),
                    ),
                ),
                QueryEngineTool(
                    query_engine=summary_query_engine,
                    metadata=ToolMetadata(
                        name="summary_tool",
                        description=(
                            "Useful for any requests that require a holistic summary"
                            f" of EVERYTHING about {doc_title}. "
                        ),
                    ),
                ),
            ]

            # build agent
            function_llm = OpenAI(model="gpt-4")
            agent = OpenAIAgent.from_tools(
                query_engine_tools,
                llm=function_llm,
                verbose=True,
                system_prompt=f"""\
        You are a specialized agent designed to answer queries about {doc_title}.
        You must ALWAYS use at least one of the tools provided when answering a question; do NOT rely on prior knowledge.\
        """,
            )

            self.agents[doc_title] = agent

        # build top-level, retrieval-enabled OpenAI Agent
        # define tool for each document agent
        all_tools = []
        for idx, doc in enumerate(docs):
            doc_title = doc_titles[idx]
            doc_description = doc_descriptions[idx]
            wiki_summary = (
                f"Use this tool if you want to answer any questions about {doc_title}.\n"
                f"Doc description: {doc_description}\n"
            )
            doc_tool = QueryEngineTool(
                query_engine=self.agents[doc_title],
                metadata=ToolMetadata(
                    name=f"tool_{doc_title}",
                    description=wiki_summary,
                ),
            )
            all_tools.append(doc_tool)

        tool_mapping = SimpleToolNodeMapping.from_objects(all_tools)
        self.obj_index = ObjectIndex.from_objects(
            all_tools,
            tool_mapping,
            VectorStoreIndex,
        )
        self.top_agent = FnRetrieverOpenAIAgent.from_retriever(
            self.obj_index.as_retriever(similarity_top_k=3),
            system_prompt=""" \
        You are an agent designed to answer queries about a set of given cities.
        Please always use the tools provided to answer a question. Do not rely on prior knowledge.\

        """,
            verbose=True,
        )

    def get_modules(self) -> Dict[str, Any]:
        """Get modules."""
        return {
            "top_agent": self.top_agent,
            "obj_index": self.obj_index,
            "doc_agents": self.agents,
        }

    def run(self, *args: Any, **kwargs: Any) -> Any:
        """Run the pipeline."""
        return self.top_agent.query(*args, **kwargs)

get_modules #

get_modules() -> Dict[str, Any]

获取模块。

源代码位于 llama-index-packs/llama-index-packs-multi-document-agents/llama_index/packs/multi_document_agents/base.py
133
134
135
136
137
138
139
def get_modules(self) -> Dict[str, Any]:
    """Get modules."""
    return {
        "top_agent": self.top_agent,
        "obj_index": self.obj_index,
        "doc_agents": self.agents,
    }

run #

run(*args: Any, **kwargs: Any) -> Any

运行流水线。

源代码位于 llama-index-packs/llama-index-packs-multi-document-agents/llama_index/packs/multi_document_agents/base.py
141
142
143
def run(self, *args: Any, **kwargs: Any) -> Any:
    """Run the pipeline."""
    return self.top_agent.query(*args, **kwargs)