跳到内容

多文档自动检索

基类: BaseLlamaPack

多文档自动检索包。

使用 Weaviate 作为底层存储。

参数

名称

类型 描述 默认值 docs
List[Document] 需要索引的文档列表。

必需

**kwargs
传递给底层索引的关键字参数。

源代码位于 llama-index-packs/llama-index-packs-multidoc-autoretrieval/llama_index/packs/multidoc_autoretrieval/base.py

**kwargs
get_modules #
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
class MultiDocAutoRetrieverPack(BaseLlamaPack):
    """
    Multi-doc auto-retriever pack.

    Uses weaviate as the underlying storage.

    Args:
        docs (List[Document]): A list of documents to index.
        **kwargs: Keyword arguments to pass to the underlying index.

    """

    def __init__(
        self,
        weaviate_client: Any,
        doc_metadata_index_name: str,
        doc_chunks_index_name: str,
        metadata_nodes: List[BaseNode],
        docs: List[Document],
        doc_metadata_schema: VectorStoreInfo,
        auto_retriever_kwargs: Optional[Dict[str, Any]] = None,
        verbose: bool = False,
    ) -> None:
        """Init params."""
        import weaviate

        # do some validation
        if len(docs) != len(metadata_nodes):
            raise ValueError(
                "The number of metadata nodes must match the number of documents."
            )

        # authenticate
        client = cast(weaviate.Client, weaviate_client)
        # auth_config = weaviate.AuthApiKey(api_key="")
        # client = weaviate.Client(
        #     "https://<weaviate-cluster>.weaviate.network",
        #     auth_client_secret=auth_config,
        # )

        # initialize two vector store classes corresponding to the two index names
        metadata_store = WeaviateVectorStore(
            weaviate_client=client, index_name=doc_metadata_index_name
        )
        metadata_sc = StorageContext.from_defaults(vector_store=metadata_store)
        # index VectorStoreIndex
        # Since "new_docs" are concise summaries, we can directly feed them as nodes into VectorStoreIndex
        index = VectorStoreIndex(metadata_nodes, storage_context=metadata_sc)
        if verbose:
            print("Indexed metadata nodes.")

        # construct separate Weaviate Index with original docs. Define a separate query engine with query engine mapping to each doc id.
        chunks_store = WeaviateVectorStore(
            weaviate_client=client, index_name=doc_chunks_index_name
        )
        chunks_sc = StorageContext.from_defaults(vector_store=chunks_store)
        doc_index = VectorStoreIndex.from_documents(docs, storage_context=chunks_sc)
        if verbose:
            print("Indexed source document nodes.")

        # setup auto retriever
        auto_retriever = VectorIndexAutoRetriever(
            index,
            vector_store_info=doc_metadata_schema,
            **(auto_retriever_kwargs or {}),
        )
        self.index_auto_retriever = IndexAutoRetriever(retriever=auto_retriever)
        if verbose:
            print("Setup autoretriever over metadata.")

        # define per-document retriever
        self.retriever_dict = {}
        for doc in docs:
            index_id = doc.metadata["index_id"]
            # filter for the specific doc id
            filters = MetadataFilters(
                filters=[
                    MetadataFilter(
                        key="index_id", operator=FilterOperator.EQ, value=index_id
                    ),
                ]
            )
            retriever = doc_index.as_retriever(filters=filters)

            self.retriever_dict[index_id] = retriever

        if verbose:
            print("Setup per-document retriever.")

        # setup recursive retriever
        self.recursive_retriever = RecursiveRetriever(
            "vector",
            retriever_dict={"vector": self.index_auto_retriever, **self.retriever_dict},
            verbose=True,
        )
        if verbose:
            print("Setup recursive retriever.")

        # plug into query engine
        llm = OpenAI(model="gpt-3.5-turbo")
        self.query_engine = RetrieverQueryEngine.from_args(
            self.recursive_retriever, llm=llm
        )

    def get_modules(self) -> Dict[str, Any]:
        """
        Returns a dictionary containing the internals of the LlamaPack.

        Returns:
            Dict[str, Any]: A dictionary containing the internals of the
            LlamaPack.

        """
        return {
            "index_auto_retriever": self.index_auto_retriever,
            "retriever_dict": self.retriever_dict,
            "recursive_retriever": self.recursive_retriever,
            "query_engine": self.query_engine,
        }

    def run(self, *args: Any, **kwargs: Any) -> Any:
        """
        Runs queries against the index.

        Returns:
            Any: A response from the query engine.

        """
        return self.query_engine.query(*args, **kwargs)

返回一个包含 LlamaPack 内部结构的字典。

get_modules() -> Dict[str, Any]

返回值

Dict[str, Any]

描述 默认值
Dict[str, Any]:一个包含以下内部结构的字典

LlamaPack。

Dict[str, Any]:一个包含以下内部结构的字典

run #

get_modules #
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
def get_modules(self) -> Dict[str, Any]:
    """
    Returns a dictionary containing the internals of the LlamaPack.

    Returns:
        Dict[str, Any]: A dictionary containing the internals of the
        LlamaPack.

    """
    return {
        "index_auto_retriever": self.index_auto_retriever,
        "retriever_dict": self.retriever_dict,
        "recursive_retriever": self.recursive_retriever,
        "query_engine": self.query_engine,
    }

对索引运行查询。

run(*args: Any, **kwargs: Any) -> Any

任意类型

Dict[str, Any]

类型 描述 默认值
查询引擎的响应。 查询引擎的响应。

返回顶部

get_modules #
174
175
176
177
178
179
180
181
182
def run(self, *args: Any, **kwargs: Any) -> Any:
    """
    Runs queries against the index.

    Returns:
        Any: A response from the query engine.

    """
    return self.query_engine.query(*args, **kwargs)