跳到内容

Oceanbase

OceanBaseVectorStore #

基础类: BasePydanticVectorStore

OceanBase 向量存储。

您需要安装 pyobvector 并运行独立的 observer 或 OceanBase 集群。

有关如何部署 OceanBase,请参阅以下文档:https://github.com/oceanbase/oceanbase-doc/blob/V4.3.1/en-US/400.deploy/500.deploy-oceanbase-database-community-edition/100.deployment-overview.md

如果使用 L2/INNER_PRODUCT 度量标准,强烈建议将 normalize 设置为 True

参数

名称 类型 描述 默认值
_client ObVecClient

OceanBase 向量存储客户端。有关更多信息,请参阅 pyobvector

必填
dim int

嵌入向量的维度。

必填
table_name str

要使用的表名。默认为 "llama_vector"。

DEFAULT_OCEANBASE_VECTOR_TABLE_NAME
vidx_metric_type str

向量之间距离的度量方法。该参数取值范围为 l2inner_product。默认为 l2

DEFAULT_OCEANBASE_VECTOR_METRIC_TYPE
vidx_algo_params Optional[dict]

要使用的索引参数。目前 OceanBase 仅支持 HNSW。请参考 DEFAULT_OCEANBASE_HNSW_BUILD_PARAM 获取示例。

None
drop_old bool

是否删除当前表。默认为 False。

False
primary_field str

主键列的名称。默认为 "id"。

DEFAULT_OCEANBASE_PFIELD
doc_id_field str

文档 ID 列的名称。默认为 "doc_id"。

DEFAULT_OCEANBASE_DOCID_FIELD
vector_field str

向量列的名称。默认为 "embedding"。

DEFAULT_OCEANBASE_VEC_FIELD
text_field str

文本列的名称。默认为 "document"。

DEFAULT_OCEANBASE_DOC_FIELD
metadata_field Optional[str]

元数据列的名称。默认为 "metadata"。当指定了 metadata_field 时,文档的元数据将存储为 json。

DEFAULT_OCEANBASE_METADATA_FIELD
vidx_name str

向量索引表的名称。

DEFAULT_OCEANBASE_VEC_INDEX_NAME
partitions ObPartition

表的分区策略。有关更多示例,请参阅 pyobvector 的文档。

None
extra_columns Optional[List[Column]]

要添加到表中的额外 sqlalchemy 列。

None
normalize bool

是否规范化向量。

False

示例

pip install llama-index-vector-stores-oceanbase

from llama_index.vector_stores.oceanbase import OceanBaseVectorStore

# Setup ObVecClient
from pyobvector import ObVecClient

client = ObVecClient(
    uri=os.getenv("OB_URI", "127.0.0.1:2881"),
    user=os.getenv("OB_USER", "root@test"),
    password=os.getenv("OB_PWD", ""),
    db_name=os.getenv("OB_DBNAME", "test"),
)

# Initialize OceanBaseVectorStore
oceanbase = OceanBaseVectorStore(
    client=client,
    dim=1024,
)
源码位于 llama-index-integrations/vector_stores/llama-index-vector-stores-oceanbase/llama_index/vector_stores/oceanbase/base.py
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
class OceanBaseVectorStore(BasePydanticVectorStore):
    """
    OceanBase Vector Store.

    You need to install `pyobvector` and run a standalone observer or OceanBase cluster.

    See the following documentation for how to deploy OceanBase:
    https://github.com/oceanbase/oceanbase-doc/blob/V4.3.1/en-US/400.deploy/500.deploy-oceanbase-database-community-edition/100.deployment-overview.md

    IF USING L2/INNER_PRODUCT metric, IT IS HIGHLY SUGGESTED TO set `normalize = True`.

    Args:
        _client (ObVecClient): OceanBase vector store client.
            Refer to `pyobvector` for more information.
        dim (int): Dimension of embedding vector.
        table_name (str): Which table name to use. Defaults to "llama_vector".
        vidx_metric_type (str): Metric method of distance between vectors.
            This parameter takes values in `l2` and `inner_product`. Defaults to `l2`.
        vidx_algo_params (Optional[dict]): Which index params to use. Now OceanBase
            supports HNSW only. Refer to `DEFAULT_OCEANBASE_HNSW_BUILD_PARAM`
            for example.
        drop_old (bool): Whether to drop the current table. Defaults
            to False.
        primary_field (str): Name of the primary key column. Defaults to "id".
        doc_id_field (str): Name of the doc id column. Defaults to "doc_id".
        vector_field (str): Name of the vector column. Defaults to "embedding".
        text_field (str): Name of the text column. Defaults to "document".
        metadata_field (Optional[str]): Name of the metadata column.
            Defaults to "metadata". When `metadata_field` is specified,
            the document's metadata will store as json.
        vidx_name (str): Name of the vector index table.
        partitions (ObPartition): Partition strategy of table. Refer to `pyobvector`'s
            documentation for more examples.
        extra_columns (Optional[List[Column]]): Extra sqlalchemy columns
            to add to the table.
        normalize (bool): normalize vector or not.

    Examples:
        `pip install llama-index-vector-stores-oceanbase`

        ```python
        from llama_index.vector_stores.oceanbase import OceanBaseVectorStore

        # Setup ObVecClient
        from pyobvector import ObVecClient

        client = ObVecClient(
            uri=os.getenv("OB_URI", "127.0.0.1:2881"),
            user=os.getenv("OB_USER", "root@test"),
            password=os.getenv("OB_PWD", ""),
            db_name=os.getenv("OB_DBNAME", "test"),
        )

        # Initialize OceanBaseVectorStore
        oceanbase = OceanBaseVectorStore(
            client=client,
            dim=1024,
        )
        ```

    """

    stores_text: bool = True

    _client: ObVecClient = PrivateAttr()
    _dim: int = PrivateAttr()
    _table_name: str = PrivateAttr()
    _vidx_metric_type: str = PrivateAttr()
    _vidx_algo_params: dict = PrivateAttr()
    _primary_field: str = PrivateAttr()
    _doc_id_field: str = PrivateAttr()
    _vector_field: str = PrivateAttr()
    _text_field: str = PrivateAttr()
    _metadata_field: str = PrivateAttr()
    _vidx_name: str = PrivateAttr()
    _partitions: Optional[Any] = PrivateAttr()
    _extra_columns: Optional[List[Column]] = PrivateAttr()
    _hnsw_ef_search: int = PrivateAttr()
    _normalize: bool = PrivateAttr()

    def __init__(
        self,
        client: ObVecClient,
        dim: int,
        table_name: str = DEFAULT_OCEANBASE_VECTOR_TABLE_NAME,
        vidx_metric_type: str = DEFAULT_OCEANBASE_VECTOR_METRIC_TYPE,
        vidx_algo_params: Optional[dict] = None,
        drop_old: bool = False,
        *,
        primary_field: str = DEFAULT_OCEANBASE_PFIELD,
        doc_id_field: str = DEFAULT_OCEANBASE_DOCID_FIELD,
        vector_field: str = DEFAULT_OCEANBASE_VEC_FIELD,
        text_field: str = DEFAULT_OCEANBASE_DOC_FIELD,
        metadata_field: str = DEFAULT_OCEANBASE_METADATA_FIELD,
        vidx_name: str = DEFAULT_OCEANBASE_VEC_INDEX_NAME,
        partitions: Optional[Any] = None,
        extra_columns: Optional[List[Column]] = None,
        normalize: bool = False,
        **kwargs,
    ):
        super().__init__()

        try:
            from pyobvector import ObVecClient
        except ImportError:
            raise ImportError(
                "Could not import pyobvector package. "
                "Please install it with `pip install pyobvector`."
            )

        if client is not None:
            if not isinstance(client, ObVecClient):
                raise ValueError("client must be of type pyobvector.ObVecClient")
        else:
            raise ValueError("client not specified")

        self._dim = dim
        self._client: ObVecClient = client
        self._table_name = table_name
        self._extra_columns = extra_columns
        self._vidx_metric_type = vidx_metric_type.lower()
        if self._vidx_metric_type not in ("l2", "inner_product"):
            raise ValueError(
                "`vidx_metric_type` should be set in `l2`/`inner_product`."
            )
        self._vidx_algo_params = vidx_algo_params or DEFAULT_OCEANBASE_HNSW_BUILD_PARAM

        self._primary_field = primary_field
        self._doc_id_field = doc_id_field
        self._vector_field = vector_field
        self._text_field = text_field
        self._metadata_field = metadata_field
        self._vidx_name = vidx_name
        self._partition = partitions
        self._hnsw_ef_search = -1
        self._normalize = normalize

        if drop_old:
            self._client.drop_table_if_exist(table_name=self._table_name)

        self._create_table_with_index()

    def _enhance_filter_key(self, filter_key: str) -> str:
        return f"{self._metadata_field}->'$.{filter_key}'"

    def _to_oceanbase_filter(
        self, metadata_filters: Optional[MetadataFilters] = None
    ) -> str:
        filters = []
        for filter in metadata_filters.filters:
            if isinstance(filter, MetadataFilters):
                filters.append(f"({self._to_oceanbase_filter(filter)})")
                continue

            filter_value = _parse_filter_value(filter.value)
            if filter_value is None and filter.operator != FilterOperator.IS_EMPTY:
                continue

            if filter.operator == FilterOperator.EQ:
                filters.append(f"{self._enhance_filter_key(filter.key)}={filter_value}")
            elif filter.operator == FilterOperator.GT:
                filters.append(f"{self._enhance_filter_key(filter.key)}>{filter_value}")
            elif filter.operator == FilterOperator.LT:
                filters.append(f"{self._enhance_filter_key(filter.key)}<{filter_value}")
            elif filter.operator == FilterOperator.NE:
                filters.append(
                    f"{self._enhance_filter_key(filter.key)}!={filter_value}"
                )
            elif filter.operator == FilterOperator.GTE:
                filters.append(
                    f"{self._enhance_filter_key(filter.key)}>={filter_value}"
                )
            elif filter.operator == FilterOperator.LTE:
                filters.append(
                    f"{self._enhance_filter_key(filter.key)}<={filter_value}"
                )
            elif filter.operator == FilterOperator.IN:
                filters.append(
                    f"{self._enhance_filter_key(filter.key)} in {filter_value}"
                )
            elif filter.operator == FilterOperator.NIN:
                filters.append(
                    f"{self._enhance_filter_key(filter.key)} not in {filter_value}"
                )
            elif filter.operator == FilterOperator.TEXT_MATCH:
                filters.append(
                    f"{self._enhance_filter_key(filter.key)} like {_parse_filter_value(filter.value, True)}"
                )
            elif filter.operator == FilterOperator.IS_EMPTY:
                filters.append(f"{self._enhance_filter_key(filter.key)} IS NULL")
            else:
                raise ValueError(
                    f'Operator {filter.operator} ("{filter.operator.value}") is not supported by OceanBase.'
                )
        return f" {metadata_filters.condition.value} ".join(filters)

    def _parse_metric_type_str_to_dist_func(self) -> Any:
        if self._vidx_metric_type == "l2":
            return func.l2_distance
        if self._vidx_metric_type == "cosine":
            return func.cosine_distance
        if self._vidx_metric_type == "inner_product":
            return func.negative_inner_product
        raise ValueError(f"Invalid vector index metric type: {self._vidx_metric_type}")

    def _load_table(self) -> None:
        table = Table(
            self._table_name,
            self._client.metadata_obj,
            autoload_with=self._client.engine,
        )
        column_names = [column.name for column in table.columns]
        optional_len = len(self._extra_columns or [])
        assert len(column_names) == (5 + optional_len)

        logging.info(f"load exist table with {column_names} columns")
        self._primary_field = column_names[0]
        self._doc_id_field = column_names[1]
        self._vector_field = column_names[2]
        self._text_field = column_names[3]
        self._metadata_field = column_names[4]

    def _create_table_with_index(self):
        if self._client.check_table_exists(self._table_name):
            self._load_table()
            return

        cols = [
            Column(
                self._primary_field, String(4096), primary_key=True, autoincrement=False
            ),
            Column(self._doc_id_field, String(4096)),
            Column(self._vector_field, VECTOR(self._dim)),
            Column(self._text_field, LONGTEXT),
            Column(self._metadata_field, JSON),
        ]
        if self._extra_columns is not None:
            cols.extend(self._extra_columns)

        vidx_params = self._client.prepare_index_params()
        vidx_params.add_index(
            field_name=self._vector_field,
            index_type=OCEANBASE_SUPPORTED_VECTOR_INDEX_TYPE,
            index_name=self._vidx_name,
            metric_type=self._vidx_metric_type,
            params=self._vidx_algo_params,
        )

        self._client.create_table_with_index_params(
            table_name=self._table_name,
            columns=cols,
            indexes=None,
            vidxs=vidx_params,
            partitions=self._partition,
        )

    @classmethod
    def class_name(cls) -> str:
        return "OceanBaseVectorStore"

    @property
    def client(self) -> Any:
        """Get client."""
        return self._client

    def get_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
    ) -> List[BaseNode]:
        """
        Get nodes from OceanBase.

        Args:
            node_ids (Optional[List[str]], optional): IDs of nodes to delete.
                Defaults to None.
            filters (Optional[MetadataFilters], optional): Metadata filters.
                Defaults to None.

        Returns:
            List[BaseNode]: List of text nodes.

        """
        if filters is not None:
            filter = self._to_oceanbase_filter(filters)
        else:
            filter = None

        res = self._client.get(
            table_name=self._table_name,
            ids=node_ids,
            where_clause=[text(filter)] if filter is not None else None,
            output_column_name=[
                self._text_field,
                self._metadata_field,
            ],
        )

        return [
            metadata_dict_to_node(
                metadata=(json.loads(r[1]) if not isinstance(r[1], dict) else r[1]),
                text=r[0],
            )
            for r in res.fetchall()
        ]

    def add(
        self,
        nodes: List[BaseNode],
        batch_size: Optional[int] = None,
        extras: Optional[List[dict]] = None,
    ) -> List[str]:
        """
        Add nodes into OceanBase.

        Args:
            nodes (List[BaseNode]): List of nodes with embeddings
                to insert.
            batch_size (Optional[int]): Insert nodes in batch.
            extras (Optional[List[dict]]): If `extra_columns` is set
                when initializing `OceanBaseVectorStore`, you can add
                nodes with extra infos.

        Returns:
            List[str]: List of ids inserted.

        """
        batch_size = batch_size or DEFAULT_OCEANBASE_BATCH_SIZE

        extra_data = extras or [{} for _ in nodes]
        if len(nodes) != len(extra_data):
            raise ValueError("nodes size & extras size mismatch")

        data = [
            {
                self._primary_field: node.id_,
                self._doc_id_field: node.ref_doc_id or None,
                self._vector_field: (
                    node.get_embedding()
                    if not self._normalize
                    else _normalize(node.get_embedding())
                ),
                self._text_field: node.get_content(metadata_mode=MetadataMode.NONE),
                self._metadata_field: node_to_metadata_dict(node, remove_text=True),
                **extra,
            }
            for node, extra in zip(nodes, extra_data)
        ]
        for data_batch in iter_batch(data, batch_size):
            self._client.insert(self._table_name, data_batch)
        return [node.id_ for node in nodes]

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        self._client.delete(
            table_name=self._table_name,
            where_clause=[text(f"{self._doc_id_field}='{ref_doc_id}'")],
        )

    def delete_nodes(
        self,
        node_ids: Optional[List[str]] = None,
        filters: Optional[MetadataFilters] = None,
        **delete_kwargs: Any,
    ) -> None:
        """
        Deletes nodes.

        Args:
            node_ids (Optional[List[str]], optional): IDs of nodes to delete.
                Defaults to None.
            filters (Optional[MetadataFilters], optional): Metadata filters.
                Defaults to None.

        """
        if filters is not None:
            filter = self._to_oceanbase_filter(filters)
        else:
            filter = None

        self._client.delete(
            table_name=self._table_name,
            ids=node_ids,
            where_clause=[text(filter)] if filter is not None else None,
        )

    def clear(self) -> None:
        """Clears table."""
        self._client.perform_raw_text_sql(f"TRUNCATE TABLE {self._table_name}")

    def _parse_distance_to_similarities(self, distance: float) -> float:
        if self._vidx_metric_type == "l2":
            return _euclidean_similarity(distance)
        elif self._vidx_metric_type == "inner_product":
            return _neg_inner_product_similarity(distance)
        raise ValueError(f"Metric Type {self._vidx_metric_type} is not supported")

    def query(
        self, query: VectorStoreQuery, param: Optional[dict] = None, **kwargs: Any
    ) -> VectorStoreQueryResult:
        """
        Perform top-k ANN search.

        Args:
            query (VectorStoreQuery): query infos
            param (Optional[dict]): The search params for the index type.
                Defaults to None. Refer to `DEFAULT_OCEANBASE_HNSW_SEARCH_PARAM`
                for example.

        """
        search_param = (
            param if param is not None else DEFAULT_OCEANBASE_HNSW_SEARCH_PARAM
        )
        ef_search = search_param.get(
            "efSearch", DEFAULT_OCEANBASE_HNSW_SEARCH_PARAM["efSearch"]
        )
        if ef_search != self._hnsw_ef_search:
            self._client.set_ob_hnsw_ef_search(ef_search)
            self._hnsw_ef_search = ef_search

        if query.filters:
            qfilters = self._to_oceanbase_filter(query.filters)
        else:
            qfilters = None

        res = self._client.ann_search(
            table_name=self._table_name,
            vec_data=(
                query.query_embedding
                if not self._normalize
                else _normalize(query.query_embedding)
            ),
            vec_column_name=self._vector_field,
            distance_func=self._parse_metric_type_str_to_dist_func(),
            with_dist=True,
            output_column_names=[
                self._primary_field,
                self._text_field,
                self._metadata_field,
            ],
            topk=query.similarity_top_k,
            where_clause=([text(qfilters)] if qfilters else None),
        )

        records = []
        for r in res.fetchall():
            records.append(r)
        return VectorStoreQueryResult(
            nodes=[
                metadata_dict_to_node(
                    metadata=json.loads(r[2]),
                    text=r[1],
                )
                for r in records
            ],
            similarities=[self._parse_distance_to_similarities(r[3]) for r in records],
            ids=[r[0] for r in records],
        )

client property #

client: Any

获取客户端。

get_nodes #

get_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None) -> List[BaseNode]

从 OceanBase 获取节点。

参数

名称 类型 描述 默认值
node_ids Optional[List[str]]

要删除的节点 ID。默认为 None。

None
filters Optional[MetadataFilters]

元数据过滤器。默认为 None。

None

返回值

类型 描述
List[BaseNode]

List[BaseNode]: 文本节点列表。

源码位于 llama-index-integrations/vector_stores/llama-index-vector-stores-oceanbase/llama_index/vector_stores/oceanbase/base.py
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
def get_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
) -> List[BaseNode]:
    """
    Get nodes from OceanBase.

    Args:
        node_ids (Optional[List[str]], optional): IDs of nodes to delete.
            Defaults to None.
        filters (Optional[MetadataFilters], optional): Metadata filters.
            Defaults to None.

    Returns:
        List[BaseNode]: List of text nodes.

    """
    if filters is not None:
        filter = self._to_oceanbase_filter(filters)
    else:
        filter = None

    res = self._client.get(
        table_name=self._table_name,
        ids=node_ids,
        where_clause=[text(filter)] if filter is not None else None,
        output_column_name=[
            self._text_field,
            self._metadata_field,
        ],
    )

    return [
        metadata_dict_to_node(
            metadata=(json.loads(r[1]) if not isinstance(r[1], dict) else r[1]),
            text=r[0],
        )
        for r in res.fetchall()
    ]

add #

add(nodes: List[BaseNode], batch_size: Optional[int] = None, extras: Optional[List[dict]] = None) -> List[str]

将节点添加到 OceanBase。

参数

名称 类型 描述 默认值
nodes List[BaseNode]

要插入的带有嵌入的节点列表。

必填
batch_size Optional[int]

批量插入节点。

None
extras Optional[List[dict]]

如果在初始化 OceanBaseVectorStore 时设置了 extra_columns,您可以添加包含额外信息的节点。

None

返回值

类型 描述
List[str]

List[str]: 已插入的 ID 列表。

源码位于 llama-index-integrations/vector_stores/llama-index-vector-stores-oceanbase/llama_index/vector_stores/oceanbase/base.py
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
def add(
    self,
    nodes: List[BaseNode],
    batch_size: Optional[int] = None,
    extras: Optional[List[dict]] = None,
) -> List[str]:
    """
    Add nodes into OceanBase.

    Args:
        nodes (List[BaseNode]): List of nodes with embeddings
            to insert.
        batch_size (Optional[int]): Insert nodes in batch.
        extras (Optional[List[dict]]): If `extra_columns` is set
            when initializing `OceanBaseVectorStore`, you can add
            nodes with extra infos.

    Returns:
        List[str]: List of ids inserted.

    """
    batch_size = batch_size or DEFAULT_OCEANBASE_BATCH_SIZE

    extra_data = extras or [{} for _ in nodes]
    if len(nodes) != len(extra_data):
        raise ValueError("nodes size & extras size mismatch")

    data = [
        {
            self._primary_field: node.id_,
            self._doc_id_field: node.ref_doc_id or None,
            self._vector_field: (
                node.get_embedding()
                if not self._normalize
                else _normalize(node.get_embedding())
            ),
            self._text_field: node.get_content(metadata_mode=MetadataMode.NONE),
            self._metadata_field: node_to_metadata_dict(node, remove_text=True),
            **extra,
        }
        for node, extra in zip(nodes, extra_data)
    ]
    for data_batch in iter_batch(data, batch_size):
        self._client.insert(self._table_name, data_batch)
    return [node.id_ for node in nodes]

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

使用 ref_doc_id 删除节点。

参数

名称 类型 描述 默认值
ref_doc_id str

要删除文档的 doc_id

必填
源码位于 llama-index-integrations/vector_stores/llama-index-vector-stores-oceanbase/llama_index/vector_stores/oceanbase/base.py
430
431
432
433
434
435
436
437
438
439
440
441
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    self._client.delete(
        table_name=self._table_name,
        where_clause=[text(f"{self._doc_id_field}='{ref_doc_id}'")],
    )

delete_nodes #

delete_nodes(node_ids: Optional[List[str]] = None, filters: Optional[MetadataFilters] = None, **delete_kwargs: Any) -> None

删除节点。

参数

名称 类型 描述 默认值
node_ids Optional[List[str]]

要删除的节点 ID。默认为 None。

None
filters Optional[MetadataFilters]

元数据过滤器。默认为 None。

None
源码位于 llama-index-integrations/vector_stores/llama-index-vector-stores-oceanbase/llama_index/vector_stores/oceanbase/base.py
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
def delete_nodes(
    self,
    node_ids: Optional[List[str]] = None,
    filters: Optional[MetadataFilters] = None,
    **delete_kwargs: Any,
) -> None:
    """
    Deletes nodes.

    Args:
        node_ids (Optional[List[str]], optional): IDs of nodes to delete.
            Defaults to None.
        filters (Optional[MetadataFilters], optional): Metadata filters.
            Defaults to None.

    """
    if filters is not None:
        filter = self._to_oceanbase_filter(filters)
    else:
        filter = None

    self._client.delete(
        table_name=self._table_name,
        ids=node_ids,
        where_clause=[text(filter)] if filter is not None else None,
    )

clear #

clear() -> None

清空表。

源码位于 llama-index-integrations/vector_stores/llama-index-vector-stores-oceanbase/llama_index/vector_stores/oceanbase/base.py
470
471
472
def clear(self) -> None:
    """Clears table."""
    self._client.perform_raw_text_sql(f"TRUNCATE TABLE {self._table_name}")

query #

query(query: VectorStoreQuery, param: Optional[dict] = None, **kwargs: Any) -> VectorStoreQueryResult

执行 top-k ANN 搜索。

参数

名称 类型 描述 默认值
query VectorStoreQuery

查询信息

必填
param Optional[dict]

索引类型的搜索参数。默认为 None。请参考 DEFAULT_OCEANBASE_HNSW_SEARCH_PARAM 获取示例。

None
源码位于 llama-index-integrations/vector_stores/llama-index-vector-stores-oceanbase/llama_index/vector_stores/oceanbase/base.py
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
def query(
    self, query: VectorStoreQuery, param: Optional[dict] = None, **kwargs: Any
) -> VectorStoreQueryResult:
    """
    Perform top-k ANN search.

    Args:
        query (VectorStoreQuery): query infos
        param (Optional[dict]): The search params for the index type.
            Defaults to None. Refer to `DEFAULT_OCEANBASE_HNSW_SEARCH_PARAM`
            for example.

    """
    search_param = (
        param if param is not None else DEFAULT_OCEANBASE_HNSW_SEARCH_PARAM
    )
    ef_search = search_param.get(
        "efSearch", DEFAULT_OCEANBASE_HNSW_SEARCH_PARAM["efSearch"]
    )
    if ef_search != self._hnsw_ef_search:
        self._client.set_ob_hnsw_ef_search(ef_search)
        self._hnsw_ef_search = ef_search

    if query.filters:
        qfilters = self._to_oceanbase_filter(query.filters)
    else:
        qfilters = None

    res = self._client.ann_search(
        table_name=self._table_name,
        vec_data=(
            query.query_embedding
            if not self._normalize
            else _normalize(query.query_embedding)
        ),
        vec_column_name=self._vector_field,
        distance_func=self._parse_metric_type_str_to_dist_func(),
        with_dist=True,
        output_column_names=[
            self._primary_field,
            self._text_field,
            self._metadata_field,
        ],
        topk=query.similarity_top_k,
        where_clause=([text(qfilters)] if qfilters else None),
    )

    records = []
    for r in res.fetchall():
        records.append(r)
    return VectorStoreQueryResult(
        nodes=[
            metadata_dict_to_node(
                metadata=json.loads(r[2]),
                text=r[1],
            )
            for r in records
        ],
        similarities=[self._parse_distance_to_similarities(r[3]) for r in records],
        ids=[r[0] for r in records],
    )