跳到内容

Singlestoredb

基类: BasePydanticVectorStore

SingleStore 向量存储。

此向量存储将嵌入存储在 SingleStore 数据库表中。

查询时,索引使用 SingleStore 查询 top k 个最相似的节点。

参数

名称

类型 描述 默认值 table_name
str 指定使用的表名。默认为 "embeddings"。

'embeddings'

content_field
指定存储内容的字段。默认为 "content"。 指定使用的表名。默认为 "embeddings"。

'content'

metadata_field
指定存储元数据的字段。默认为 "metadata"。 指定使用的表名。默认为 "embeddings"。

'metadata'

vector_field
指定存储向量的字段。默认为 "vector"。 指定使用的表名。默认为 "embeddings"。

'vector'

以下
参数与连接池相关 必需
pool_size
int 确定连接池中的活动连接数。默认为 5。

max_overflow

5
确定超出 pool_size 的最大允许连接数。默认为 10。 确定连接池中的活动连接数。默认为 5。

timeout

10
float 指定建立连接的最大等待时间(秒)。默认为 30。

参数与连接相关

30
参数与连接池相关 host
pool_size
指定数据库连接的主机名、IP 地址或 URL。默认方案为 "mysql"。 指定使用的表名。默认为 "embeddings"。

user

pool_size
数据库用户名。 指定使用的表名。默认为 "embeddings"。

password

pool_size
数据库密码。 指定使用的表名。默认为 "embeddings"。

port

pool_size
数据库端口。非 HTTP 连接默认为 3306,HTTP 连接默认为 80,HTTPS 连接默认为 443。 确定连接池中的活动连接数。默认为 5。

database

pool_size
数据库名称。 指定使用的表名。默认为 "embeddings"。

pip install llama-index-vector-stores-singlestoredb

pool_size

示例

源代码位于 llama-index-integrations/vector_stores/llama-index-vector-stores-singlestoredb/llama_index/vector_stores/singlestoredb/base.py

from llama_index.vector_stores.singlestoredb import SingleStoreVectorStore
import os

# can set the singlestore db url in env
# or pass it in as an argument to the SingleStoreVectorStore constructor
os.environ["SINGLESTOREDB_URL"] = "PLACEHOLDER URL"
vector_store = SingleStoreVectorStore(
    table_name="embeddings",
    content_field="content",
    metadata_field="metadata",
    vector_field="vector",
    timeout=30,
)
client property #
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
class SingleStoreVectorStore(BasePydanticVectorStore):
    """
    SingleStore vector store.

    This vector store stores embeddings within a SingleStore database table.

    During query time, the index uses SingleStore to query for the top
    k most similar nodes.

    Args:
        table_name (str, optional): Specifies the name of the table in use.
                Defaults to "embeddings".
        content_field (str, optional): Specifies the field to store the content.
            Defaults to "content".
        metadata_field (str, optional): Specifies the field to store metadata.
            Defaults to "metadata".
        vector_field (str, optional): Specifies the field to store the vector.
            Defaults to "vector".

        Following arguments pertain to the connection pool:

        pool_size (int, optional): Determines the number of active connections in
            the pool. Defaults to 5.
        max_overflow (int, optional): Determines the maximum number of connections
            allowed beyond the pool_size. Defaults to 10.
        timeout (float, optional): Specifies the maximum wait time in seconds for
            establishing a connection. Defaults to 30.

        Following arguments pertain to the connection:

        host (str, optional): Specifies the hostname, IP address, or URL for the
                database connection. The default scheme is "mysql".
        user (str, optional): Database username.
        password (str, optional): Database password.
        port (int, optional): Database port. Defaults to 3306 for non-HTTP
            connections, 80 for HTTP connections, and 443 for HTTPS connections.
        database (str, optional): Database name.

    Examples:
        `pip install llama-index-vector-stores-singlestoredb`

        ```python
        from llama_index.vector_stores.singlestoredb import SingleStoreVectorStore
        import os

        # can set the singlestore db url in env
        # or pass it in as an argument to the SingleStoreVectorStore constructor
        os.environ["SINGLESTOREDB_URL"] = "PLACEHOLDER URL"
        vector_store = SingleStoreVectorStore(
            table_name="embeddings",
            content_field="content",
            metadata_field="metadata",
            vector_field="vector",
            timeout=30,
        )
        ```

    """

    stores_text: bool = True
    flat_metadata: bool = True

    table_name: str
    content_field: str
    metadata_field: str
    vector_field: str
    pool_size: int
    max_overflow: int
    timeout: float
    connection_kwargs: dict
    connection_pool: QueuePool

    def __init__(
        self,
        table_name: str = "embeddings",
        content_field: str = "content",
        metadata_field: str = "metadata",
        vector_field: str = "vector",
        pool_size: int = 5,
        max_overflow: int = 10,
        timeout: float = 30,
        **kwargs: Any,
    ) -> None:
        """Init params."""
        super().__init__(
            table_name=table_name,
            content_field=content_field,
            metadata_field=metadata_field,
            vector_field=vector_field,
            pool_size=pool_size,
            max_overflow=max_overflow,
            timeout=timeout,
            connection_kwargs=kwargs,
            connection_pool=QueuePool(
                self._get_connection,
                pool_size=pool_size,
                max_overflow=max_overflow,
                timeout=timeout,
            ),
            stores_text=True,
        )

        self._create_table()

    @property
    def client(self) -> Any:
        """Return SingleStoreDB client."""
        return self._get_connection()

    @classmethod
    def class_name(cls) -> str:
        return "SingleStoreVectorStore"

    def _get_connection(self) -> Any:
        return s2.connect(**self.connection_kwargs)

    def _create_table(self) -> None:
        VALID_NAME_PATTERN = re.compile(r"^[a-zA-Z0-9_]+$")
        if not VALID_NAME_PATTERN.match(self.table_name):
            raise ValueError(
                f"Invalid table name: {self.table_name}. Table names can only contain alphanumeric characters and underscores."
            )

        if not VALID_NAME_PATTERN.match(self.content_field):
            raise ValueError(
                f"Invalid content_field: {self.content_field}. Field names can only contain alphanumeric characters and underscores."
            )

        if not VALID_NAME_PATTERN.match(self.vector_field):
            raise ValueError(
                f"Invalid vector_field: {self.vector_field}. Field names can only contain alphanumeric characters and underscores."
            )

        if not VALID_NAME_PATTERN.match(self.metadata_field):
            raise ValueError(
                f"Invalid metadata_field: {self.metadata_field}. Field names can only contain alphanumeric characters and underscores."
            )
        conn = self.connection_pool.connect()
        try:
            cur = conn.cursor()
            try:
                cur.execute(
                    f"""CREATE TABLE IF NOT EXISTS {self.table_name}
                    ({self.content_field} TEXT CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci,
                    {self.vector_field} BLOB, {self.metadata_field} JSON);"""
                )
            finally:
                cur.close()
        finally:
            conn.close()

    def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
        """
        Add nodes to index.

        Args:
            nodes: List[BaseNode]: list of nodes with embeddings

        """
        insert_query = (
            f"INSERT INTO {self.table_name} VALUES (%s, JSON_ARRAY_PACK(%s), %s)"
        )

        conn = self.connection_pool.connect()
        try:
            cursor = conn.cursor()
            try:
                for node in nodes:
                    embedding = node.get_embedding()
                    metadata = node_to_metadata_dict(
                        node, remove_text=True, flat_metadata=self.flat_metadata
                    )
                    # Use parameterized query for all data values
                    cursor.execute(
                        insert_query,
                        (
                            node.get_content(metadata_mode=MetadataMode.NONE) or "",
                            "[{}]".format(",".join(map(str, embedding))),
                            json.dumps(metadata),
                        ),
                    )
            finally:
                cursor.close()
        finally:
            conn.close()

        return [node.node_id for node in nodes]

    def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
        """
        Delete nodes using with ref_doc_id.

        Args:
            ref_doc_id (str): The doc_id of the document to delete.

        """
        delete_query = f"DELETE FROM {self.table_name} WHERE JSON_EXTRACT_JSON({self.metadata_field}, 'ref_doc_id') = %s"
        conn = self.connection_pool.connect()
        try:
            cursor = conn.cursor()
            try:
                cursor.execute(delete_query, (json.dumps(ref_doc_id),))
            finally:
                cursor.close()
        finally:
            conn.close()

    def query(
        self, query: VectorStoreQuery, filter: Optional[dict] = None, **kwargs: Any
    ) -> VectorStoreQueryResult:
        """
        Query index for top k most similar nodes.

        Args:
            query (VectorStoreQuery): Contains query_embedding and similarity_top_k attributes.
            filter (Optional[dict]): A dictionary of metadata fields and values to filter by. Defaults to None.

        Returns:
            VectorStoreQueryResult: Contains nodes, similarities, and ids attributes.

        """
        query_embedding = query.query_embedding
        similarity_top_k = query.similarity_top_k
        if not isinstance(similarity_top_k, int) or similarity_top_k <= 0:
            raise ValueError(
                f"similarity_top_k must be a positive integer, got {similarity_top_k}"
            )
        conn = self.connection_pool.connect()
        where_clause: str = ""
        where_clause_values: List[Any] = []

        if filter:
            where_clause = "WHERE "
            arguments = []

            def build_where_clause(
                where_clause_values: List[Any],
                sub_filter: dict,
                prefix_args: Optional[List[str]] = None,
            ) -> None:
                prefix_args = prefix_args or []
                for key in sub_filter:
                    if isinstance(sub_filter[key], dict):
                        build_where_clause(
                            where_clause_values, sub_filter[key], [*prefix_args, key]
                        )
                    else:
                        arguments.append(
                            f"JSON_EXTRACT({self.metadata_field}, {', '.join(['%s'] * (len(prefix_args) + 1))}) = %s"
                        )
                        where_clause_values += [*prefix_args, key]
                        where_clause_values.append(json.dumps(sub_filter[key]))

            build_where_clause(where_clause_values, filter)
            where_clause += " AND ".join(arguments)

        results: Sequence[Any] = []
        if query_embedding:
            try:
                cur = conn.cursor()
                formatted_vector = "[{}]".format(",".join(map(str, query_embedding)))
                try:
                    logger.debug("vector field: %s", formatted_vector)
                    logger.debug("similarity_top_k: %s", similarity_top_k)
                    cur.execute(
                        f"SELECT {self.content_field}, {self.metadata_field}, "
                        f"DOT_PRODUCT({self.vector_field}, "
                        "JSON_ARRAY_PACK(%s)) as similarity_score "
                        f"FROM {self.table_name} {where_clause} "
                        f"ORDER BY similarity_score DESC LIMIT {similarity_top_k}",
                        (formatted_vector, *tuple(where_clause_values)),
                    )
                    results = cur.fetchall()
                finally:
                    cur.close()
            finally:
                conn.close()

        nodes = []
        similarities = []
        ids = []
        for result in results:
            text, metadata, similarity_score = result
            node = metadata_dict_to_node(metadata)
            node.set_content(text)
            nodes.append(node)
            similarities.append(similarity_score)
            ids.append(node.node_id)

        return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)

返回 SingleStoreDB 客户端。

client: Any

add #

将节点添加到索引。

add(nodes: List[BaseNode], **add_kwargs: Any) -> List[str]

nodes

名称

类型 描述 默认值 table_name
List[BaseNode] List

List[BaseNode]:带有嵌入的节点列表

pool_size
client property #
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]:
    """
    Add nodes to index.

    Args:
        nodes: List[BaseNode]: list of nodes with embeddings

    """
    insert_query = (
        f"INSERT INTO {self.table_name} VALUES (%s, JSON_ARRAY_PACK(%s), %s)"
    )

    conn = self.connection_pool.connect()
    try:
        cursor = conn.cursor()
        try:
            for node in nodes:
                embedding = node.get_embedding()
                metadata = node_to_metadata_dict(
                    node, remove_text=True, flat_metadata=self.flat_metadata
                )
                # Use parameterized query for all data values
                cursor.execute(
                    insert_query,
                    (
                        node.get_content(metadata_mode=MetadataMode.NONE) or "",
                        "[{}]".format(",".join(map(str, embedding))),
                        json.dumps(metadata),
                    ),
                )
        finally:
            cursor.close()
    finally:
        conn.close()

    return [node.node_id for node in nodes]

delete #

delete(ref_doc_id: str, **delete_kwargs: Any) -> None

使用 ref_doc_id 删除节点。

名称

类型 描述 默认值 table_name
ref_doc_id 指定使用的表名。默认为 "embeddings"。

要删除文档的 doc_id。

pool_size
client property #
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
    """
    Delete nodes using with ref_doc_id.

    Args:
        ref_doc_id (str): The doc_id of the document to delete.

    """
    delete_query = f"DELETE FROM {self.table_name} WHERE JSON_EXTRACT_JSON({self.metadata_field}, 'ref_doc_id') = %s"
    conn = self.connection_pool.connect()
    try:
        cursor = conn.cursor()
        try:
            cursor.execute(delete_query, (json.dumps(ref_doc_id),))
        finally:
            cursor.close()
    finally:
        conn.close()

query #

query(query: VectorStoreQuery, filter: Optional[dict] = None, **kwargs: Any) -> VectorStoreQueryResult

查询索引以获取 top k 个最相似的节点。

名称

类型 描述 默认值 table_name
Supabase VectorStoreQuery

包含 query_embedding 和 similarity_top_k 属性。

pool_size
filter Optional[dict]

用于过滤的元数据字段和值的字典。默认为 None。

返回值

类型 描述 默认值
VectorStoreQueryResult VectorStoreQueryResult

包含 nodes、similarities 和 ids 属性。

client property #
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
def query(
    self, query: VectorStoreQuery, filter: Optional[dict] = None, **kwargs: Any
) -> VectorStoreQueryResult:
    """
    Query index for top k most similar nodes.

    Args:
        query (VectorStoreQuery): Contains query_embedding and similarity_top_k attributes.
        filter (Optional[dict]): A dictionary of metadata fields and values to filter by. Defaults to None.

    Returns:
        VectorStoreQueryResult: Contains nodes, similarities, and ids attributes.

    """
    query_embedding = query.query_embedding
    similarity_top_k = query.similarity_top_k
    if not isinstance(similarity_top_k, int) or similarity_top_k <= 0:
        raise ValueError(
            f"similarity_top_k must be a positive integer, got {similarity_top_k}"
        )
    conn = self.connection_pool.connect()
    where_clause: str = ""
    where_clause_values: List[Any] = []

    if filter:
        where_clause = "WHERE "
        arguments = []

        def build_where_clause(
            where_clause_values: List[Any],
            sub_filter: dict,
            prefix_args: Optional[List[str]] = None,
        ) -> None:
            prefix_args = prefix_args or []
            for key in sub_filter:
                if isinstance(sub_filter[key], dict):
                    build_where_clause(
                        where_clause_values, sub_filter[key], [*prefix_args, key]
                    )
                else:
                    arguments.append(
                        f"JSON_EXTRACT({self.metadata_field}, {', '.join(['%s'] * (len(prefix_args) + 1))}) = %s"
                    )
                    where_clause_values += [*prefix_args, key]
                    where_clause_values.append(json.dumps(sub_filter[key]))

        build_where_clause(where_clause_values, filter)
        where_clause += " AND ".join(arguments)

    results: Sequence[Any] = []
    if query_embedding:
        try:
            cur = conn.cursor()
            formatted_vector = "[{}]".format(",".join(map(str, query_embedding)))
            try:
                logger.debug("vector field: %s", formatted_vector)
                logger.debug("similarity_top_k: %s", similarity_top_k)
                cur.execute(
                    f"SELECT {self.content_field}, {self.metadata_field}, "
                    f"DOT_PRODUCT({self.vector_field}, "
                    "JSON_ARRAY_PACK(%s)) as similarity_score "
                    f"FROM {self.table_name} {where_clause} "
                    f"ORDER BY similarity_score DESC LIMIT {similarity_top_k}",
                    (formatted_vector, *tuple(where_clause_values)),
                )
                results = cur.fetchall()
            finally:
                cur.close()
        finally:
            conn.close()

    nodes = []
    similarities = []
    ids = []
    for result in results:
        text, metadata, similarity_score = result
        node = metadata_dict_to_node(metadata)
        node.set_content(text)
        nodes.append(node)
        similarities.append(similarity_score)
        ids.append(node.node_id)

    return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)