跳到内容

查询引擎

基类: AsyncBaseTool

查询引擎工具。

利用查询引擎的工具。

参数

名称

类型 描述 默认值 query_engine
BaseQueryEngine 一个查询引擎。

必需

metadata
ToolMetadata 查询引擎相关的元数据。

源代码位于 llama-index-core/llama_index/core/tools/query_engine.py

metadata
回到顶部
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
class QueryEngineTool(AsyncBaseTool):
    """
    Query engine tool.

    A tool making use of a query engine.

    Args:
        query_engine (BaseQueryEngine): A query engine.
        metadata (ToolMetadata): The associated metadata of the query engine.

    """

    def __init__(
        self,
        query_engine: BaseQueryEngine,
        metadata: ToolMetadata,
        resolve_input_errors: bool = True,
    ) -> None:
        self._query_engine = query_engine
        self._metadata = metadata
        self._resolve_input_errors = resolve_input_errors

    @classmethod
    def from_defaults(
        cls,
        query_engine: BaseQueryEngine,
        name: Optional[str] = None,
        description: Optional[str] = None,
        return_direct: bool = False,
        resolve_input_errors: bool = True,
    ) -> "QueryEngineTool":
        name = name or DEFAULT_NAME
        description = description or DEFAULT_DESCRIPTION

        metadata = ToolMetadata(
            name=name, description=description, return_direct=return_direct
        )
        return cls(
            query_engine=query_engine,
            metadata=metadata,
            resolve_input_errors=resolve_input_errors,
        )

    @property
    def query_engine(self) -> BaseQueryEngine:
        return self._query_engine

    @property
    def metadata(self) -> ToolMetadata:
        return self._metadata

    def call(self, *args: Any, **kwargs: Any) -> ToolOutput:
        query_str = self._get_query_str(*args, **kwargs)
        response = self._query_engine.query(query_str)
        return ToolOutput(
            content=str(response),
            tool_name=self.metadata.name,
            raw_input={"input": query_str},
            raw_output=response,
        )

    async def acall(self, *args: Any, **kwargs: Any) -> ToolOutput:
        query_str = self._get_query_str(*args, **kwargs)
        response = await self._query_engine.aquery(query_str)
        return ToolOutput(
            content=str(response),
            tool_name=self.metadata.name,
            raw_input={"input": query_str},
            raw_output=response,
        )

    def as_langchain_tool(self) -> "LlamaIndexTool":
        from llama_index.core.langchain_helpers.agents.tools import (
            IndexToolConfig,
            LlamaIndexTool,
        )

        tool_config = IndexToolConfig(
            query_engine=self.query_engine,
            name=self.metadata.name,
            description=self.metadata.description,
        )
        return LlamaIndexTool.from_tool_config(tool_config=tool_config)

    def _get_query_str(self, *args: Any, **kwargs: Any) -> str:
        if args is not None and len(args) > 0:
            query_str = str(args[0])
        elif kwargs is not None and "input" in kwargs:
            # NOTE: this assumes our default function schema of `input`
            query_str = kwargs["input"]
        elif kwargs is not None and self._resolve_input_errors:
            query_str = str(kwargs)
        else:
            raise ValueError(
                "Cannot call query engine without specifying `input` parameter."
            )
        return query_str