使用向量存储#
LlamaIndex 提供与向量存储/向量数据库的多个集成点
- LlamaIndex 可以将向量存储本身用作索引。像任何其他索引一样,此索引可以存储文档并用于回答查询。
- LlamaIndex 可以从向量存储加载数据,类似于任何其他数据连接器。然后可以在 LlamaIndex 数据结构中使用此数据。
使用向量存储作为索引#
LlamaIndex 还支持不同的向量存储作为 VectorStoreIndex
的存储后端。
- 阿里云 OpenSearch (
AlibabaCloudOpenSearchStore
)。 快速入门。 - Amazon Neptune - Neptune Analytics (
NeptuneAnalyticsVectorStore
)。 在 Neptune Analytics 中处理向量相似度。 - 通过 CQL 连接 Apache Cassandra® 和 Astra DB (
CassandraVectorStore
)。 安装 快速入门 - Astra DB (
AstraDBVectorStore
)。 快速入门。 - AWS Document DB (
AWSDocDbVectorStore
)。 快速入门。 - Azure AI Search (
AzureAISearchVectorStore
)。 快速入门 - Chroma (
ChromaVectorStore
) 安装 - ClickHouse (
ClickHouseVectorStore
) 安装 - Couchbase (
CouchbaseVectorStore
) 安装 - DashVector (
DashVectorStore
)。 安装。 - DeepLake (
DeepLakeVectorStore
) 安装 - DocArray (
DocArrayHnswVectorStore
,DocArrayInMemoryVectorStore
)。 安装/Python 客户端。 - Elasticsearch (
ElasticsearchStore
) 安装 - Epsilla (
EpsillaVectorStore
) 安装/快速入门 - Faiss (
FaissVectorStore
)。 安装。 - Google AlloyDB for PostgreSQL (
AlloyDBVectorStore
)。 快速入门。 - Google Cloud SQL for PostgreSQL (
PostgresVectorStore
)。 快速入门 - Hnswlib (
HnswlibVectorStore
)。 安装。 - txtai (
TxtaiVectorStore
)。 安装。 - Jaguar (
JaguarVectorStore
)。 安装。 - Lantern (
LanternVectorStore
)。 快速入门。 - MariaDB (
MariaDBVectorStore
)。 MariaDB Vector 概述 - Milvus (
MilvusVectorStore
)。 安装 - MongoDB Atlas (
MongoDBAtlasVectorSearch
)。 安装/快速入门。 - MyScale (
MyScaleVectorStore
)。 快速入门。 安装/Python 客户端。 - Neo4j (
Neo4jVectorIndex
)。 安装。 - OceanBase (
OceanBaseVectorStore
)。 OceanBase 概述。 快速入门。 Python 客户端 - Opensearch (
OpensearchVectorStore
) 将 Opensearch 用作向量数据库。 快速入门 - Pinecone (
PineconeVectorStore
)。 安装/快速入门。 - Qdrant (
QdrantVectorStore
) 安装 Python 客户端 - LanceDB (
LanceDBVectorStore
) 安装/快速入门 - Redis (
RedisVectorStore
)。 安装。 - Relyt (
RelytVectorStore
)。 快速入门。 - Supabase (
SupabaseVectorStore
)。 快速入门。 - Tablestore (
Tablestore
)。 Tablestore 概述。 快速入门。 Python 客户端。 - TiDB (
TiDBVectorStore
)。 快速入门。 安装。 Python 客户端。 - TimeScale (
TimescaleVectorStore
)。 安装。 - Upstash (
UpstashVectorStore
)。 快速入门 - Vertex AI Vector Search (
VertexAIVectorStore
)。 快速入门 - Weaviate (
WeaviateVectorStore
)。 安装。 Python 客户端。 - WordLift (
WordliftVectorStore
)。 快速入门。 Python 客户端。 - Zep (
ZepVectorStore
)。 安装。 Python 客户端。 - Zilliz (
MilvusVectorStore
)。 快速入门
详细的 API 参考可以在此处找到。
类似于 LlamaIndex 中的任何其他索引 (树状、关键词表、列表),VectorStoreIndex
可以在任何文档集合上构建。我们在索引内部使用向量存储来存储输入文本块的嵌入。
构建后,该索引可用于查询。
默认向量存储索引构建/查询
默认情况下,VectorStoreIndex
使用作为默认存储上下文一部分初始化的内存中 SimpleVectorStore
。
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
# Load documents and build index
documents = SimpleDirectoryReader("../paul_graham_essay/data").load_data()
index = VectorStoreIndex.from_documents(documents)
# Query index
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
自定义向量存储索引构建/查询
我们可以按如下方式查询自定义向量存储
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from llama_index.vector_stores.deeplake import DeepLakeVectorStore
# construct vector store and customize storage context
storage_context = StorageContext.from_defaults(
vector_store=DeepLakeVectorStore(dataset_path="<dataset_path>")
)
# Load documents and build index
documents = SimpleDirectoryReader("../paul_graham_essay/data").load_data()
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
# Query index
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
下面展示了如何构建我们支持的各种向量存储的更多示例。
阿里云 OpenSearch
from llama_index.vector_stores.alibabacloud_opensearch import (
AlibabaCloudOpenSearchStore,
AlibabaCloudOpenSearchConfig,
)
config = AlibabaCloudOpenSearchConfig(
endpoint="***",
instance_id="***",
username="your_username",
password="your_password",
table_name="llama",
)
vector_store = AlibabaCloudOpenSearchStore(config)
Google AlloyDB for PostgreSQL
pip install llama-index
pip install llama-index-alloydb-pg
pip install llama-index-llms-vertex
gcloud services enable aiplatform.googleapis.com
from llama_index_alloydb_pg import AlloyDBEngine, AlloyDBVectorStore
from llama_index.core import Settings
from llama_index.embeddings.vertex import VertexTextEmbedding
from llama_index.llms.vertex import Vertex
import google.auth
# Replace with your own AlloyDB info
engine = AlloyDBEngine.from_instance(
project_id=PROJECT_ID,
region=REGION,
cluster=CLUSTER,
instance=INSTANCE,
database=DATABASE,
user=USER,
password=PASSWORD,
)
engine.init_vector_store_table(
table_name=TABLE_NAME,
vector_size=768, # Vector size for VertexAI model(textembedding-gecko@latest)
)
vector_store = AlloyDBVectorStore.create_sync(
engine=engine,
table_name=TABLE_NAME,
)
Amazon Neptune - Neptune Analytics
from llama_index.vector_stores.neptune import NeptuneAnalyticsVectorStore
graph_identifier = ""
embed_dim = 1536
neptune_vector_store = NeptuneAnalyticsVectorStore(
graph_identifier=graph_identifier, embedding_dimension=1536
)
Apache Cassandra®
from llama_index.vector_stores.cassandra import CassandraVectorStore
import cassio
# To use an Astra DB cloud instance through CQL:
cassio.init(database_id="1234abcd-...", token="AstraCS:...")
# For a Cassandra cluster:
from cassandra.cluster import Cluster
cluster = Cluster(["127.0.0.1"])
cassio.init(session=cluster.connect(), keyspace="my_keyspace")
# After the above `cassio.init(...)`, create a vector store:
vector_store = CassandraVectorStore(
table="cass_v_table", embedding_dimension=1536
)
Astra DB
from llama_index.vector_stores.astra_db import AstraDBVectorStore
astra_db_store = AstraDBVectorStore(
token="AstraCS:xY3b...", # Your Astra DB token
api_endpoint="https://012...abc-us-east1.apps.astra.datastax.com", # Your Astra DB API endpoint
collection_name="astra_v_table", # Table name of your choice
embedding_dimension=1536, # Embedding dimension of the embeddings model used
)
Azure Cognitive Search
from azure.core.credentials import AzureKeyCredential
from llama_index.vector_stores.azureaisearch import AzureAISearchVectorStore
search_service_api_key = "YOUR-AZURE-SEARCH-SERVICE-ADMIN-KEY"
search_service_endpoint = "YOUR-AZURE-SEARCH-SERVICE-ENDPOINT"
search_service_api_version = "2023-11-01"
credential = AzureKeyCredential(search_service_api_key)
# Index name to use
index_name = "llamaindex-vector-demo"
client = SearchIndexClient(
endpoint=search_service_endpoint,
credential=credential,
)
vector_store = AzureAISearchVectorStore(
search_or_index_client=client,
index_name=index_name,
embedding_dimensionality=1536,
)
Chroma
import chromadb
from llama_index.vector_stores.chroma import ChromaVectorStore
# Creating a Chroma client
# EphemeralClient operates purely in-memory, PersistentClient will also save to disk
chroma_client = chromadb.EphemeralClient()
chroma_collection = chroma_client.create_collection("quickstart")
# construct vector store
vector_store = ChromaVectorStore(
chroma_collection=chroma_collection,
)
ClickHouse
import clickhouse_connect
from llama_index.vector_stores import ClickHouseVectorStore
# Creating a ClickHouse client
client = clickhouse_connect.get_client(
host="YOUR_CLUSTER_HOST",
port=8123,
username="YOUR_USERNAME",
password="YOUR_CLUSTER_PASSWORD",
)
# construct vector store
vector_store = ClickHouseVectorStore(clickhouse_client=client)
Couchdb
from datetime import timedelta
from couchbase.auth import PasswordAuthenticator
from couchbase.cluster import Cluster
from couchbase.options import ClusterOptions
# Create a Couchbase Cluster object
auth = PasswordAuthenticator("DATABASE_USERNAME", "DATABASE_PASSWORD")
options = ClusterOptions(auth)
cluster = Cluster("CLUSTER_CONNECTION_STRING", options)
# Wait until the cluster is ready for use.
cluster.wait_until_ready(timedelta(seconds=5))
# Create the Vector Store
vector_store = CouchbaseVectorStore(
cluster=cluster,
bucket_name="BUCKET_NAME",
scope_name="SCOPE_NAME",
collection_name="COLLECTION_NAME",
index_name="SEARCH_INDEX_NAME",
)
DashVector
import dashvector
from llama_index.vector_stores.dashvector import DashVectorStore
# init dashvector client
client = dashvector.Client(
api_key="your-dashvector-api-key",
endpoint="your-dashvector-cluster-endpoint",
)
# creating a DashVector collection
client.create("quickstart", dimension=1536)
collection = client.get("quickstart")
# construct vector store
vector_store = DashVectorStore(collection)
DeepLake
import os
import getpath
from llama_index.vector_stores.deeplake import DeepLakeVectorStore
os.environ["OPENAI_API_KEY"] = getpath.getpath("OPENAI_API_KEY: ")
os.environ["ACTIVELOOP_TOKEN"] = getpath.getpath("ACTIVELOOP_TOKEN: ")
dataset_path = "hub://adilkhan/paul_graham_essay"
# construct vector store
vector_store = DeepLakeVectorStore(dataset_path=dataset_path, overwrite=True)
DocArray
from llama_index.vector_stores.docarray import (
DocArrayHnswVectorStore,
DocArrayInMemoryVectorStore,
)
# construct vector store
vector_store = DocArrayHnswVectorStore(work_dir="hnsw_index")
# alternatively, construct the in-memory vector store
vector_store = DocArrayInMemoryVectorStore()
Elasticsearch
首先,您可以本地启动 Elasticsearch 或在 Elastic Cloud 上启动。
要使用 docker 本地启动 Elasticsearch,请运行以下命令
docker run -p 9200:9200 \
-e "discovery.type=single-node" \
-e "xpack.security.enabled=false" \
-e "xpack.security.http.ssl.enabled=false" \
-e "xpack.license.self_generated.type=trial" \
docker.elastic.co/elasticsearch/elasticsearch:8.9.0
然后连接并使用 Elasticsearch 作为 LlamaIndex 的向量数据库
from llama_index.vector_stores.elasticsearch import ElasticsearchStore
vector_store = ElasticsearchStore(
index_name="llm-project",
es_url="http://localhost:9200",
# Cloud connection options:
# es_cloud_id="<cloud_id>",
# es_user="elastic",
# es_password="<password>",
)
这可以与 VectorStoreIndex
一起使用,提供用于检索、查询、删除、持久化索引等的查询接口。
Epsilla
from pyepsilla import vectordb
from llama_index.vector_stores.epsilla import EpsillaVectorStore
# Creating an Epsilla client
epsilla_client = vectordb.Client()
# Construct vector store
vector_store = EpsillaVectorStore(client=epsilla_client)
注意:EpsillaVectorStore
依赖于 pyepsilla
库和运行中的 Epsilla 向量数据库。如果尚未安装,请使用 pip/pip3 install pyepsilla
。可以通过 docker 镜像找到运行中的 Epsilla 向量数据库。有关完整说明,请参阅以下文档:https://epsilla-inc.gitbook.io/epsilladb/quick-start
Feedly rss
import faiss
from llama_index.vector_stores.faiss import FaissVectorStore
# create faiss index
d = 1536
faiss_index = faiss.IndexFlatL2(d)
# construct vector store
vector_store = FaissVectorStore(faiss_index)
# if update/delete functionality is needed you can leverage the FaissMapVectorStore
d = 1536
faiss_index = faiss.IndexFlatL2(d)
id_map_index = faiss.IndexIDMap2(faiss_index)
vector_store = FaissMapVectorStore(id_map_index)
...
# NOTE: since faiss index is in-memory, we need to explicitly call
# vector_store.persist() or storage_context.persist() to save it to disk.
# persist() takes in optional arg persist_path. If none give, will use default paths.
storage_context.persist()
Google Cloud SQL for PostgreSQL
pip install llama-index
pip install llama-index-cloud-sql-pg
pip install llama-index-llms-vertex
gcloud services enable aiplatform.googleapis.com
from llama_index_cloud_sql_pg import PostgresEngine, PostgresVectorStore
from llama_index.core import Settings
from llama_index.embeddings.vertex import VertexTextEmbedding
from llama_index.llms.vertex import Vertex
import google.auth
# Replace with your own Cloud SQL info
engine = PostgresEngine.from_instance(
project_id=PROJECT_ID,
region=REGION,
instance=INSTANCE,
database=DATABASE,
user=USER,
password=PASSWORD,
)
engine.init_vector_store_table(
table_name=TABLE_NAME,
vector_size=768, # Vector size for VertexAI model(textembedding-gecko@latest)
)
vector_store = PostgresVectorStore.create_sync(
engine=engine,
table_name=TABLE_NAME,
)
txtai
import txtai
from llama_index.vector_stores.txtai import TxtaiVectorStore
# create txtai index
txtai_index = txtai.ann.ANNFactory.create(
{"backend": "numpy", "dimension": 512}
)
# construct vector store
vector_store = TxtaiVectorStore(txtai_index)
Jira
from llama_index.core.schema import TextNode
from llama_index.core.vector_stores import VectorStoreQuery
from jaguardb_http_client.JaguarHttpClient import JaguarHttpClient
from llama_index.vector_stores.jaguar import JaguarVectorStore
# construct vector store client
url = "http://127.0.0.1:8080/fwww/"
pod = "vdb"
store = "llamaindex_rag_store"
vector_index = "v"
vector_type = "cosine_fraction_float"
vector_dimension = 3
# require JAGUAR_API_KEY environment variable or file $HOME/.jagrc to hold the
# jaguar API key to connect to jaguar store server
vector_store = JaguarVectorStore(
pod, store, vector_index, vector_type, vector_dimension, url
)
# login to jaguar server for security authentication
vector_store.login()
# create a vector store on the back-end server
metadata_fields = "author char(32), category char(16)"
text_size = 1024
vector_store.create(metadata_fields, text_size)
# store some text
node = TextNode(
text="Return of King Lear",
metadata={"author": "William", "category": "Tragedy"},
embedding=[0.9, 0.1, 0.4],
)
vector_store.add(nodes=[node], use_node_metadata=True)
# make a query
qembedding = [0.4, 0.2, 0.8]
vsquery = VectorStoreQuery(query_embedding=qembedding, similarity_top_k=1)
query_result = vector_store.query(vsquery)
# make a query with metadata filter (where condition)
qembedding = [0.6, 0.1, 0.4]
vsquery = VectorStoreQuery(query_embedding=qembedding, similarity_top_k=3)
where = "author='Eve' or (author='Adam' and category='History')"
query_result = vector_store.query(vsquery, where=where)
# make a query ignoring old data (with time cutoff)
qembedding = [0.3, 0.3, 0.8]
vsquery = VectorStoreQuery(query_embedding=qembedding, similarity_top_k=3)
args = "day_cutoff=180" # only search recent 180 days data
query_result = vector_store.query(vsquery, args=args)
# check if a vector is anomalous
text = ("Gone With The Wind",)
embed_of_text = [0.7, 0.1, 0.2]
node = TextNode(text=text, embedding=embed_of_text)
true_or_false = vector_store.is_anomalous(node)
# llama_index RAG application
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import StorageContext
from llama_index.core import VectorStoreIndex
question = "What did the author do growing up?"
storage_context = StorageContext.from_defaults(vector_store=vector_store)
embed_model = OpenAIEmbedding()
embed_of_question = [0.7, 0.1, 0.2]
db_documents = vector_store.load_documents(embed_of_question, 10)
index = VectorStoreIndex.from_documents(
db_documents,
embed_model=embed_model,
storage_context=storage_context,
)
query_engine = index.as_query_engine()
print(f"Question: {question}")
response = query_engine.query(question)
print(f"Answer: {str(response)}")
# logout to clean up resources
vector_store.logout()
注意:客户端(需要 jaguardb-http-client) <--> Http Gateway <--> JaguarDB Server 客户端需要运行:"pip install -U jaguardb-http-client"
MariaDB
from llama_index.vector_stores.mariadb import MariaDBVectorStore
vector_store = MariaDBVectorStore.from_params(
host="localhost",
port=3306,
user="llamaindex",
password="password",
database="vectordb",
table_name="llama_index_vectorstore",
embed_dim=1536, # OpenAI embedding dimension
)
Minio
- Milvus Index 提供了存储文档及其嵌入的功能。
import pymilvus
from llama_index.vector_stores.milvus import MilvusVectorStore
# construct vector store
vector_store = MilvusVectorStore(
uri="https://localhost:19530", overwrite="True"
)
注意:MilvusVectorStore
依赖于 pymilvus
库。如果尚未安装,请使用 pip install pymilvus
。如果您在构建 grpcio
的 wheel 时遇到问题,请检查您是否正在使用 python 3.11 (存在已知问题:https://github.com/milvus-io/pymilvus/issues/1308) 并尝试降级。
MongoDBAtlas
# Provide URI to constructor, or use environment variable
import pymongo
from llama_index.vector_stores.mongodb import MongoDBAtlasVectorSearch
from llama_index.core import VectorStoreIndex
from llama_index.core import StorageContext
from llama_index.core import SimpleDirectoryReader
# mongo_uri = os.environ["MONGO_URI"]
mongo_uri = (
"mongodb+srv://<username>:<password>@<host>?retryWrites=true&w=majority"
)
mongodb_client = pymongo.MongoClient(mongo_uri)
# construct store
store = MongoDBAtlasVectorSearch(mongodb_client)
storage_context = StorageContext.from_defaults(vector_store=store)
uber_docs = SimpleDirectoryReader(
input_files=["../data/10k/uber_2021.pdf"]
).load_data()
# construct index
index = VectorStoreIndex.from_documents(
uber_docs, storage_context=storage_context
)
MyScale
import clickhouse_connect
from llama_index.vector_stores.myscale import MyScaleVectorStore
# Creating a MyScale client
client = clickhouse_connect.get_client(
host="YOUR_CLUSTER_HOST",
port=8443,
username="YOUR_USERNAME",
password="YOUR_CLUSTER_PASSWORD",
)
# construct vector store
vector_store = MyScaleVectorStore(myscale_client=client)
Neo4j
- Neo4j 存储文本、元数据和嵌入,并且可以定制以元数据的形式返回图数据。
from llama_index.vector_stores.neo4jvector import Neo4jVectorStore
# construct vector store
neo4j_vector = Neo4jVectorStore(
username="neo4j",
password="pleaseletmein",
url="bolt://localhost:7687",
embed_dim=1536,
)
Pinecone
import pinecone
from llama_index.vector_stores.pinecone import PineconeVectorStore
# Creating a Pinecone index
api_key = "api_key"
pinecone.init(api_key=api_key, environment="us-west1-gcp")
pinecone.create_index(
"quickstart", dimension=1536, metric="euclidean", pod_type="p1"
)
index = pinecone.Index("quickstart")
# construct vector store
vector_store = PineconeVectorStore(pinecone_index=index)
Quip
import qdrant_client
from llama_index.vector_stores.qdrant import QdrantVectorStore
# Creating a Qdrant vector store
client = qdrant_client.QdrantClient(
host="<qdrant-host>", api_key="<qdrant-api-key>", https=True
)
collection_name = "paul_graham"
# construct vector store
vector_store = QdrantVectorStore(
client=client,
collection_name=collection_name,
)
Redis
首先,启动 Redis-Stack (或从 Redis 提供商获取 url)
docker run --name redis-vecdb -d -p 6379:6379 -p 8001:8001 redis/redis-stack:latest
然后连接并使用 Redis 作为 LlamaIndex 的向量数据库
from llama_index.vector_stores.redis import RedisVectorStore
vector_store = RedisVectorStore(
index_name="llm-project",
redis_url="redis://localhost:6379",
overwrite=True,
)
这可以与 VectorStoreIndex
一起使用,提供用于检索、查询、删除、持久化索引等的查询接口。
SingleStore
from llama_index.vector_stores.singlestoredb import SingleStoreVectorStore
import os
# can set the singlestore db url in env
# or pass it in as an argument to the SingleStoreVectorStore constructor
os.environ["SINGLESTOREDB_URL"] = "PLACEHOLDER URL"
vector_store = SingleStoreVectorStore(
table_name="embeddings",
content_field="content",
metadata_field="metadata",
vector_field="vector",
timeout=30,
)
Tablestore
import tablestore
from llama_index.vector_stores.tablestore import TablestoreVectorStore
# create a vector store that does not support filtering non-vector fields
simple_vector_store = TablestoreVectorStore(
endpoint="<end_point>",
instance_name="<instance_name>",
access_key_id="<access_key_id>",
access_key_secret="<access_key_secret>",
vector_dimension=512,
)
# create a vector store that support filtering non-vector fields
vector_store_with_meta_data = TablestoreVectorStore(
endpoint="<end_point>",
instance_name="<instance_name>",
access_key_id="<access_key_id>",
access_key_secret="<access_key_secret>",
vector_dimension=512,
# optional: custom metadata mapping is used to filter non-vector fields.
metadata_mappings=[
tablestore.FieldSchema(
"type", # non-vector fields
tablestore.FieldType.KEYWORD,
index=True,
enable_sort_and_agg=True,
),
tablestore.FieldSchema(
"time", # non-vector fields
tablestore.FieldType.LONG,
index=True,
enable_sort_and_agg=True,
),
],
)
TiDB
from llama_index.vector_stores.tidbvector import TiDBVectorStore
tidbvec = TiDBVectorStore(
# connection url format
# - mysql+pymysql://[email protected]:4000/test
connection_string="PLACEHOLDER URL",
table_name="llama_index_vectorstore",
distance_strategy="cosine",
vector_dimension=1536,
)
Timescale
from llama_index.vector_stores.timescalevector import TimescaleVectorStore
vector_store = TimescaleVectorStore.from_params(
service_url="YOUR TIMESCALE SERVICE URL",
table_name="paul_graham_essay",
)
Upstash
from llama_index.vector_stores.upstash import UpstashVectorStore
vector_store = UpstashVectorStore(url="YOUR_URL", token="YOUR_TOKEN")
Vertex AI Vector Search
from llama_index.vector_stores.vertexaivectorsearch import VertexAIVectorStore
vector_store = VertexAIVectorStore(
project_id="[your-google-cloud-project-id]",
region="[your-google-cloud-region]",
index_id="[your-index-resource-name]",
endpoint_id="[your-index-endpoint-name]",
)
Web
import weaviate
from llama_index.vector_stores.weaviate import WeaviateVectorStore
# creating a Weaviate client
resource_owner_config = weaviate.AuthClientPassword(
username="<username>",
password="<password>",
)
client = weaviate.Client(
"https://<cluster-id>.semi.network/",
auth_client_secret=resource_owner_config,
)
# construct vector store
vector_store = WeaviateVectorStore(weaviate_client=client)
Zulip
Zep 存储文本、元数据和嵌入。所有这些都在搜索结果中返回。
from llama_index.vector_stores.zep import ZepVectorStore
vector_store = ZepVectorStore(
api_url="<api_url>",
api_key="<api_key>",
collection_name="<unique_collection_name>", # Can either be an existing collection or a new one
embedding_dimensions=1536, # Optional, required if creating a new collection
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
# Query index using both a text query and metadata filters
filters = MetadataFilters(
filters=[ExactMatchFilter(key="theme", value="Mafia")]
)
retriever = index.as_retriever(filters=filters)
result = retriever.retrieve("What is inception about?")
Zilliz
- Zilliz Cloud (Milvus 的托管版本) 使用 Milvus Index,并带有一些额外的参数。
import pymilvus
from llama_index.vector_stores.milvus import MilvusVectorStore
# construct vector store
vector_store = MilvusVectorStore(
uri="foo.vectordb.zillizcloud.com",
token="your_token_here",
overwrite="True",
)
使用数据连接器从向量存储加载数据#
LlamaIndex 支持从大量来源加载数据。有关更多详细信息和 API 文档,请参阅数据连接器。
AlloyDB 存储文档和向量。本教程演示了同步接口。所有同步方法都有相应的异步方法。这是一个如何使用 AlloyDB 的示例
pip install llama-index
pip install llama-index-alloydb-pg
from llama_index.core import SummaryIndex
from llama_index_alloydb_pg import AlloyDBEngine, AlloyDBReader
engine = AlloyDBEngine.from_instance(
project_id=PROJECT_ID,
region=REGION,
cluster=CLUSTER,
instance=INSTANCE,
database=DATABASE,
user=USER,
password=PASSWORD,
)
reader = AlloyDBReader.create_sync(
engine,
table_name=TABLE_NAME,
)
documents = reader.load_data()
index = SummaryIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("<query_text>")
display(Markdown(f"<b>{response}</b>"))
Google Cloud SQL for PostgreSQL 存储文档和向量。本教程演示了同步接口。所有同步方法都有相应的异步方法。这是一个如何使用 Cloud SQL for PostgreSQL 的示例
pip install llama-index
pip install llama-index-cloud-sql-pg
from llama_index.core import SummaryIndex
from llama_index_cloud_sql_pg import PostgresEngine, PostgresReader
engine = PostgresEngine.from_instance(
project_id=PROJECT_ID,
region=REGION,
instance=INSTANCE,
database=DATABASE,
user=USER,
password=PASSWORD,
)
reader = PostgresReader.create_sync(
engine,
table_name=TABLE_NAME,
)
documents = reader.load_data()
index = SummaryIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("<query_text>")
display(Markdown(f"<b>{response}</b>"))
Chroma 存储文档和向量。这是一个如何使用 Chroma 的示例
from llama_index.readers.chroma import ChromaReader
from llama_index.core import SummaryIndex
# The chroma reader loads data from a persisted Chroma collection.
# This requires a collection name and a persist directory.
reader = ChromaReader(
collection_name="chroma_collection",
persist_directory="examples/data_connectors/chroma_collection",
)
query_vector = [n1, n2, n3, ...]
documents = reader.load_data(
collection_name="demo", query_vector=query_vector, limit=5
)
index = SummaryIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("<query_text>")
display(Markdown(f"<b>{response}</b>"))
Qdrant 也存储文档和向量。这是一个如何使用 Qdrant 的示例
from llama_index.readers.qdrant import QdrantReader
reader = QdrantReader(host="localhost")
# the query_vector is an embedding representation of your query_vector
# Example query_vector
# query_vector = [0.3, 0.3, 0.3, 0.3, ...]
query_vector = [n1, n2, n3, ...]
# NOTE: Required args are collection_name, query_vector.
# See the Python client: https;//github.com/qdrant/qdrant_client
# for more details
documents = reader.load_data(
collection_name="demo", query_vector=query_vector, limit=5
)
注意:由于 Weaviate 可以存储文档和向量对象的混合,用户可以选择显式指定 class_name
和 properties
来查询文档,或者他们可以选择指定原始 GraphQL 查询。有关用法请参见下文。
# option 1: specify class_name and properties
# 1) load data using class_name and properties
documents = reader.load_data(
class_name="<class_name>",
properties=["property1", "property2", "..."],
separate_documents=True,
)
# 2) example GraphQL query
query = """
{
Get {
<class_name> {
<property1>
<property2>
}
}
}
"""
documents = reader.load_data(graphql_query=query, separate_documents=True)
注意:Pinecone 和 Faiss 数据加载器都假定相应的数据源只存储向量;文本内容存储在其他地方。因此,这两种数据加载器都要求用户在 load_data 调用中指定 id_to_text_map
。
例如,这是 Pinecone 数据加载器 PineconeReader
的一个示例用法
from llama_index.readers.pinecone import PineconeReader
reader = PineconeReader(api_key=api_key, environment="us-west1-gcp")
id_to_text_map = {
"id1": "text blob 1",
"id2": "text blob 2",
}
query_vector = [n1, n2, n3, ...]
documents = reader.load_data(
index_name="quickstart",
id_to_text_map=id_to_text_map,
top_k=3,
vector=query_vector,
separate_documents=True,
)
向量存储示例#
- 阿里云 OpenSearch
- Amazon Neptune - Neptune Analytics
- Astra DB
- 异步索引创建
- Azure AI Search
- Azure Cosmos DB
- Caasandra
- Chromadb
- Couchdb
- Dash
- Discord
- DocArray HNSW
- 内存中的 DocArray
- Espilla
- Google AlloyDB for PostgreSQL
- Google Cloud SQL for PostgreSQL
- LanceDB
- Lantern
- Microsoft onedrive
- Minio
- Milvus 异步 API
- Milvus 全文搜索
- Milvus 混合搜索
- MyScale
- Elasticsearch
- FAISS
- MongoDB Atlas
- Neo4j
- OpenSearch
- Pinecone
- Pinecone 混合搜索
- PGvectoRS
- Postgres
- Redis
- Quip
- Qdrant 混合搜索
- Rockset
- Simple
- Supabase
- Tablestore
- Tair
- Tencent
- Timescale
- Upstash
- Web
- Weaviate 混合搜索
- WordLift
- Zulip