上下文检索¶
在此笔记本中,我们将演示如何使用 LlamaIndex 抽象实现 Anthropic 的上下文检索。
我们将使用
Paul Graham 论文
数据集。- Anthropic LLM 用于为每个块创建上下文。
- OpenAI LLM 用于合成查询生成和嵌入模型。
- CohereAI Reranker。
安装¶
In [ ]
已复制!
!pip install -U llama-index llama-index-llms-anthropic llama-index-postprocessor-cohere-rerank llama-index-retrievers-bm25 stemmer
!pip install -U llama-index llama-index-llms-anthropic llama-index-postprocessor-cohere-rerank llama-index-retrievers-bm25 stemmer
In [ ]
已复制!
import nest_asyncio
nest_asyncio.apply()
import nest_asyncio nest_asyncio.apply()
设置 API 密钥¶
In [ ]
已复制!
import os
# For creating context for each chunk
os.environ["ANTHROPIC_API_KEY"] = "<YOUR ANTHROPIC API KEY>"
# For creating synthetic dataset and embedding model
os.environ["OPENAI_API_KEY"] = "<YOUR OPENAI API KEY>"
# For reranker
os.environ["COHERE_API_KEY"] = "<YOUR COHEREAI API KEY>"
import os # 用于为每个块创建上下文 os.environ["ANTHROPIC_API_KEY"] = "" # 用于创建合成数据集和嵌入模型 os.environ["OPENAI_API_KEY"] = "" # 用于重排序器 os.environ["COHERE_API_KEY"] = ""
设置 LLM 和嵌入模型¶
In [ ]
已复制!
from llama_index.llms.anthropic import Anthropic
llm_anthropic = Anthropic(model="claude-3-5-sonnet-20240620")
from llama_index.llms.anthropic import Anthropic llm_anthropic = Anthropic(model="claude-3-5-sonnet-20240620")
In [ ]
已复制!
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings
Settings.embed_model = OpenAIEmbedding()
from llama_index.embeddings.openai import OpenAIEmbedding from llama_index.core import Settings Settings.embed_model = OpenAIEmbedding()
下载数据¶
In [ ]
已复制!
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O './paul_graham_essay.txt'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O './paul_graham_essay.txt'
--2024-10-01 13:00:06-- https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ... Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 75042 (73K) [text/plain] Saving to: ‘./paul_graham_essay.txt’ ./paul_graham_essay 100%[===================>] 73.28K --.-KB/s in 0.08s 2024-10-01 13:00:06 (921 KB/s) - ‘./paul_graham_essay.txt’ saved [75042/75042]
加载数据¶
In [ ]
已复制!
from llama_index.core import SimpleDirectoryReader
documents = SimpleDirectoryReader(
input_files=["./paul_graham_essay.txt"],
).load_data()
WHOLE_DOCUMENT = documents[0].text
from llama_index.core import SimpleDirectoryReader documents = SimpleDirectoryReader( input_files=["./paul_graham_essay.txt"], ).load_data() WHOLE_DOCUMENT = documents[0].text
In [ ]
已复制!
prompt_document = """<document>
{WHOLE_DOCUMENT}
</document>"""
prompt_chunk = """Here is the chunk we want to situate within the whole document
<chunk>
{CHUNK_CONTENT}
</chunk>
Please give a short succinct context to situate this chunk within the overall document for the purposes of improving search retrieval of the chunk. Answer only with the succinct context and nothing else."""
prompt_document = """{WHOLE_DOCUMENT} """ prompt_chunk = """Here is the chunk we want to situate within the whole document{CHUNK_CONTENT} Please give a short succinct context to situate this chunk within the overall document for the purposes of improving search retrieval of the chunk. Answer only with the succinct context and nothing else."""
工具¶
create_contextual_nodes
- 用于为节点列表创建上下文节点的函数。create_embedding_retriever
- 用于为节点列表创建嵌入检索器的函数。create_bm25_retriever
- 用于为节点列表创建 BM25 检索器的函数。EmbeddingBM25RerankerRetriever
- 使用嵌入和 BM25 检索器以及重排序器的自定义检索器。create_eval_dataset
- 用于从节点列表创建评估数据集的函数。set_node_ids
- 用于为节点列表设置节点 ID 的函数。retrieval_results
- 用于获取检索器和评估数据集的检索结果的函数。display_results
- 用于显示retrieval_results
结果的函数
In [ ]
已复制!
from llama_index.retrievers.bm25 import BM25Retriever
from llama_index.core.evaluation import (
generate_question_context_pairs,
RetrieverEvaluator,
)
from llama_index.core.retrievers import BaseRetriever, VectorIndexRetriever
from llama_index.core.schema import NodeWithScore
from llama_index.core import VectorStoreIndex, QueryBundle
from llama_index.core.llms import ChatMessage, TextBlock
import pandas as pd
import copy
import Stemmer
from typing import List
def create_contextual_nodes(nodes_):
"""Function to create contextual nodes for a list of nodes"""
nodes_modified = []
for node in nodes_:
new_node = copy.deepcopy(node)
messages = [
ChatMessage(role="system", content="You are helpful AI Assitant."),
ChatMessage(
role="user",
content=[
TextBlock(
text=prompt_document.format(
WHOLE_DOCUMENT=WHOLE_DOCUMENT
)
),
TextBlock(
text=prompt_chunk.format(CHUNK_CONTENT=node.text)
),
],
additional_kwargs={"cache_control": {"type": "ephemeral"}},
),
]
new_node.metadata["context"] = str(
llm_anthropic.chat(
messages,
extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"},
)
)
nodes_modified.append(new_node)
return nodes_modified
def create_embedding_retriever(nodes_, similarity_top_k=2):
"""Function to create an embedding retriever for a list of nodes"""
vector_index = VectorStoreIndex(nodes_)
retriever = vector_index.as_retriever(similarity_top_k=similarity_top_k)
return retriever
def create_bm25_retriever(nodes_, similarity_top_k=2):
"""Function to create a bm25 retriever for a list of nodes"""
bm25_retriever = BM25Retriever.from_defaults(
nodes=nodes_,
similarity_top_k=similarity_top_k,
stemmer=Stemmer.Stemmer("english"),
language="english",
)
return bm25_retriever
def create_eval_dataset(nodes_, llm, num_questions_per_chunk=2):
"""Function to create a evaluation dataset for a list of nodes"""
qa_dataset = generate_question_context_pairs(
nodes_, llm=llm, num_questions_per_chunk=num_questions_per_chunk
)
return qa_dataset
def set_node_ids(nodes_):
"""Function to set node ids for a list of nodes"""
# by default, the node ids are set to random uuids. To ensure same id's per run, we manually set them.
for index, node in enumerate(nodes_):
node.id_ = f"node_{index}"
return nodes_
async def retrieval_results(retriever, eval_dataset):
"""Function to get retrieval results for a retriever and evaluation dataset"""
metrics = ["hit_rate", "mrr", "precision", "recall", "ap", "ndcg"]
retriever_evaluator = RetrieverEvaluator.from_metric_names(
metrics, retriever=retriever
)
eval_results = await retriever_evaluator.aevaluate_dataset(qa_dataset)
return eval_results
def display_results(name, eval_results):
"""Display results from evaluate."""
metrics = ["hit_rate", "mrr", "precision", "recall", "ap", "ndcg"]
metric_dicts = []
for eval_result in eval_results:
metric_dict = eval_result.metric_vals_dict
metric_dicts.append(metric_dict)
full_df = pd.DataFrame(metric_dicts)
columns = {
"retrievers": [name],
**{k: [full_df[k].mean()] for k in metrics},
}
metric_df = pd.DataFrame(columns)
return metric_df
class EmbeddingBM25RerankerRetriever(BaseRetriever):
"""Custom retriever that uses both embedding and bm25 retrievers and reranker"""
def __init__(
self,
vector_retriever: VectorIndexRetriever,
bm25_retriever: BM25Retriever,
reranker: CohereRerank,
) -> None:
"""Init params."""
self._vector_retriever = vector_retriever
self.bm25_retriever = bm25_retriever
self.reranker = reranker
super().__init__()
def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:
"""Retrieve nodes given query."""
vector_nodes = self._vector_retriever.retrieve(query_bundle)
bm25_nodes = self.bm25_retriever.retrieve(query_bundle)
vector_nodes.extend(bm25_nodes)
retrieved_nodes = self.reranker.postprocess_nodes(
vector_nodes, query_bundle
)
return retrieved_nodes
from llama_index.retrievers.bm25 import BM25Retriever from llama_index.core.evaluation import ( generate_question_context_pairs, RetrieverEvaluator, ) from llama_index.core.retrievers import BaseRetriever, VectorIndexRetriever from llama_index.core.schema import NodeWithScore from llama_index.core import VectorStoreIndex, QueryBundle from llama_index.core.llms import ChatMessage, TextBlock import pandas as pd import copy import Stemmer from typing import List def create_contextual_nodes(nodes_: List) -> List: """Function to create contextual nodes for a list of nodes""" nodes_modified = [] for node in nodes_: new_node = copy.deepcopy(node) messages = [ ChatMessage(role="system", content="You are helpful AI Assitant."), ChatMessage( role="user", content=[ TextBlock( text=prompt_document.format( WHOLE_DOCUMENT=WHOLE_DOCUMENT ) ), TextBlock( text=prompt_chunk.format(CHUNK_CONTENT=node.text) ), ], additional_kwargs={"cache_control": {"type": "ephemeral"}}, ), ] new_node.metadata["context"] = str( llm_anthropic.chat( messages, extra_headers={"anthropic-beta": "prompt-caching-2024-07-31"}, ) ) nodes_modified.append(new_node) return nodes_modified def create_embedding_retriever(nodes_: List, similarity_top_k: int = 2) -> VectorIndexRetriever: """Function to create an embedding retriever for a list of nodes""" vector_index = VectorStoreIndex(nodes_) retriever = vector_index.as_retriever(similarity_top_k=similarity_top_k) return retriever def create_bm25_retriever(nodes_: List, similarity_top_k: int = 2) -> BM25Retriever: """Function to create a bm25 retriever for a list of nodes""" bm25_retriever = BM25Retriever.from_defaults( nodes=nodes_, similarity_top_k=similarity_top_k, stemmer=Stemmer.Stemmer("english"), language="english", ) return bm25_retriever def create_eval_dataset(nodes_: List, llm, num_questions_per_chunk: int = 2): """Function to create a evaluation dataset for a list of nodes""" qa_dataset = generate_question_context_pairs( nodes_, llm=llm, num_questions_per_chunk=num_questions_per_chunk ) return qa_dataset def set_node_ids(nodes_: List): """Function to set node ids for a list of nodes""" # by default, the node ids are set to random uuids. To ensure same id's per run, we manually set them. for index, node in enumerate(nodes_): node.id_ = f"node_{index}" return nodes_ async def retrieval_results(retriever: BaseRetriever, eval_dataset): """Function to get retrieval results for a retriever and evaluation dataset""" metrics = ["hit_rate", "mrr", "precision", "recall", "ap", "ndcg"] retriever_evaluator = RetrieverEvaluator.from_metric_names( metrics, retriever=retriever ) eval_results = await retriever_evaluator.aevaluate_dataset(qa_dataset) return eval_results def display_results(name: str, eval_results: List) -> pd.DataFrame: """Display results from evaluate.""" metrics = ["hit_rate", "mrr", "precision", "recall", "ap", "ndcg"] metric_dicts = [] for eval_result in eval_results: metric_dict = eval_result.metric_vals_dict metric_dicts.append(metric_dict) full_df = pd.DataFrame(metric_dicts) columns = { "retrievers": [name], **{k: [full_df[k].mean()] for k in metrics}, } metric_df = pd.DataFrame(columns) return metric_df class EmbeddingBM25RerankerRetriever(BaseRetriever): """Custom retriever that uses both embedding and bm25 retrievers and reranker""" def __init__( self, vector_retriever: VectorIndexRetriever, bm25_retriever: BM25Retriever, reranker: CohereRerank, ) -> None: """Init params.""" self._vector_retriever = vector_retriever self.bm25_retriever = bm25_retriever self.reranker = reranker super().__init__() def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]: """Retrieve nodes given query.""" vector_nodes = self._vector_retriever.retrieve(query_bundle) bm25_nodes = self.bm25_retriever.retrieve(query_bundle) vector_nodes.extend(bm25_nodes) retrieved_nodes = self.reranker.postprocess_nodes( vector_nodes, query_bundle ) return retrieved_nodes
创建节点¶
In [ ]
已复制!
from llama_index.core.node_parser import SentenceSplitter
node_parser = SentenceSplitter(chunk_size=1024, chunk_overlap=200)
nodes = node_parser.get_nodes_from_documents(documents, show_progress=False)
from llama_index.core.node_parser import SentenceSplitter node_parser = SentenceSplitter(chunk_size=1024, chunk_overlap=200) nodes = node_parser.get_nodes_from_documents(documents, show_progress=False)
设置节点 ID¶
对于带有和不带有上下文文本的节点,保持一致的结果比较非常有用。
In [ ]
已复制!
# set node ids
nodes = set_node_ids(nodes)
# 设置节点 ID nodes = set_node_ids(nodes)
In [ ]
已复制!
nodes[0].metadata
nodes[0].metadata
Out [ ]
{'file_path': 'paul_graham_essay.txt', 'file_name': 'paul_graham_essay.txt', 'file_type': 'text/plain', 'file_size': 75042, 'creation_date': '2024-10-01', 'last_modified_date': '2024-10-01'}
创建上下文节点¶
In [ ]
已复制!
nodes_contextual = create_contextual_nodes(nodes)
nodes_contextual = create_contextual_nodes(nodes)
In [ ]
已复制!
nodes[0].metadata, nodes_contextual[0].metadata
nodes[0].metadata, nodes_contextual[0].metadata
Out [ ]
({'file_path': 'paul_graham_essay.txt', 'file_name': 'paul_graham_essay.txt', 'file_type': 'text/plain', 'file_size': 75042, 'creation_date': '2024-10-01', 'last_modified_date': '2024-10-01'}, {'file_path': 'paul_graham_essay.txt', 'file_name': 'paul_graham_essay.txt', 'file_type': 'text/plain', 'file_size': 75042, 'creation_date': '2024-10-01', 'last_modified_date': '2024-10-01', 'context': 'assistant: This chunk is the opening section of Paul Graham\'s essay "What I Worked On," describing his early experiences with programming and writing as a teenager, his initial interest in philosophy in college, and his subsequent shift to studying artificial intelligence in the mid-1980s.'})
设置 similarity_top_k
¶
In [ ]
已复制!
similarity_top_k = 3
similarity_top_k = 3
设置 CohereReranker
¶
In [ ]
已复制!
from llama_index.postprocessor.cohere_rerank import CohereRerank
cohere_rerank = CohereRerank(
api_key=os.environ["COHERE_API_KEY"], top_n=similarity_top_k
)
from llama_index.postprocessor.cohere_rerank import CohereRerank cohere_rerank = CohereRerank( api_key=os.environ["COHERE_API_KEY"], top_n=similarity_top_k )
创建检索器。¶
- 基于嵌入的检索器。
- 基于 BM25 的检索器。
- 嵌入 + BM25 + Cohere 重排序器检索器。
In [ ]
已复制!
embedding_retriever = create_embedding_retriever(
nodes, similarity_top_k=similarity_top_k
)
bm25_retriever = create_bm25_retriever(
nodes, similarity_top_k=similarity_top_k
)
embedding_bm25_retriever_rerank = EmbeddingBM25RerankerRetriever(
embedding_retriever, bm25_retriever, reranker=cohere_rerank
)
embedding_retriever = create_embedding_retriever( nodes, similarity_top_k=similarity_top_k ) bm25_retriever = create_bm25_retriever( nodes, similarity_top_k=similarity_top_k ) embedding_bm25_retriever_rerank = EmbeddingBM25RerankerRetriever( embedding_retriever, bm25_retriever, reranker=cohere_rerank )
DEBUG:bm25s:Building index from IDs objects
使用上下文节点创建检索器。¶
In [ ]
已复制!
contextual_embedding_retriever = create_embedding_retriever(
nodes_contextual, similarity_top_k=similarity_top_k
)
contextual_bm25_retriever = create_bm25_retriever(
nodes_contextual, similarity_top_k=similarity_top_k
)
contextual_embedding_bm25_retriever_rerank = EmbeddingBM25RerankerRetriever(
contextual_embedding_retriever,
contextual_bm25_retriever,
reranker=cohere_rerank,
)
contextual_embedding_retriever = create_embedding_retriever( nodes_contextual, similarity_top_k=similarity_top_k ) contextual_bm25_retriever = create_bm25_retriever( nodes_contextual, similarity_top_k=similarity_top_k ) contextual_embedding_bm25_retriever_rerank = EmbeddingBM25RerankerRetriever( contextual_embedding_retriever, contextual_bm25_retriever, reranker=cohere_rerank, )
DEBUG:bm25s:Building index from IDs objects
创建合成查询数据集¶
In [ ]
已复制!
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4")
qa_dataset = create_eval_dataset(nodes, llm=llm, num_questions_per_chunk=2)
from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4") qa_dataset = create_eval_dataset(nodes, llm=llm, num_questions_per_chunk=2)
100%|██████████| 21/21 [02:59<00:00, 8.53s/it]
In [ ]
已复制!
list(qa_dataset.queries.values())[1]
list(qa_dataset.queries.values())[1]
Out [ ]
"The author initially intended to study philosophy in college but later switched to AI. Discuss the reasons behind this shift in interest and how specific influences like Heinlein's novel and Winograd's SHRDLU contributed to his decision."
评估带有和不带有上下文节点的检索器¶
In [ ]
已复制!
embedding_retriever_results = await retrieval_results(
embedding_retriever, qa_dataset
)
bm25_retriever_results = await retrieval_results(bm25_retriever, qa_dataset)
embedding_bm25_retriever_rerank_results = await retrieval_results(
embedding_bm25_retriever_rerank, qa_dataset
)
embedding_retriever_results = await retrieval_results( embedding_retriever, qa_dataset ) bm25_retriever_results = await retrieval_results(bm25_retriever, qa_dataset) embedding_bm25_retriever_rerank_results = await retrieval_results( embedding_bm25_retriever_rerank, qa_dataset )
In [ ]
已复制!
contextual_embedding_retriever_results = await retrieval_results(
contextual_embedding_retriever, qa_dataset
)
contextual_bm25_retriever_results = await retrieval_results(
contextual_bm25_retriever, qa_dataset
)
contextual_embedding_bm25_retriever_rerank_results = await retrieval_results(
contextual_embedding_bm25_retriever_rerank, qa_dataset
)
contextual_embedding_retriever_results = await retrieval_results( contextual_embedding_retriever, qa_dataset ) contextual_bm25_retriever_results = await retrieval_results( contextual_bm25_retriever, qa_dataset ) contextual_embedding_bm25_retriever_rerank_results = await retrieval_results( contextual_embedding_bm25_retriever_rerank, qa_dataset )
显示结果¶
不带上下文¶
In [ ]
已复制!
pd.concat(
[
display_results("Embedding Retriever", embedding_retriever_results),
display_results("BM25 Retriever", bm25_retriever_results),
display_results(
"Embedding + BM25 Retriever + Reranker",
embedding_bm25_retriever_rerank_results,
),
],
ignore_index=True,
axis=0,
)
pd.concat( [ display_results("Embedding Retriever", embedding_retriever_results), display_results("BM25 Retriever", bm25_retriever_results), display_results( "Embedding + BM25 Retriever + Reranker", embedding_bm25_retriever_rerank_results, ), ], ignore_index=True, axis=0, )
Out [ ]
检索器 | 命中率 | MRR | 精确率 | 召回率 | AP | NDCG | |
---|---|---|---|---|---|---|---|
0 | 嵌入检索器 | 0.857143 | 0.726190 | 0.285714 | 0.857143 | 0.726190 | 0.356613 |
1 | BM25 检索器 | 0.904762 | 0.777778 | 0.301587 | 0.904762 | 0.777778 | 0.380157 |
2 | 嵌入 + BM25 检索器 + 重排序器 | 0.952381 | 0.865079 | 0.456349 | 0.952381 | 0.865079 | 0.530172 |
带上下文¶
In [ ]
已复制!
pd.concat(
[
display_results(
"Contextual Embedding Retriever",
contextual_embedding_retriever_results,
),
display_results(
"Contextual BM25 Retriever", contextual_bm25_retriever_results
),
display_results(
"Contextual Embedding + Contextual BM25 Retriever + Reranker",
contextual_embedding_bm25_retriever_rerank_results,
),
],
ignore_index=True,
axis=0,
)
pd.concat( [ display_results( "Contextual Embedding Retriever", contextual_embedding_retriever_results, ), display_results( "Contextual BM25 Retriever", contextual_bm25_retriever_results ), display_results( "Contextual Embedding + Contextual BM25 Retriever + Reranker", contextual_embedding_bm25_retriever_rerank_results, ), ], ignore_index=True, axis=0, )
Out [ ]
检索器 | 命中率 | MRR | 精确率 | 召回率 | AP | NDCG | |
---|---|---|---|---|---|---|---|
0 | 上下文嵌入检索器 | 0.928571 | 0.746032 | 0.309524 | 0.928571 | 0.746032 | 0.372175 |
1 | 上下文 BM25 检索器 | 0.952381 | 0.829365 | 0.317460 | 0.952381 | 0.829365 | 0.403967 |
2 | 上下文嵌入 + 上下文 BM25 检索器 + 重排序器... | 0.976190 | 0.900794 | 0.476190 | 0.976190 | 0.900794 | 0.555746 |
观察:¶
我们观察到上下文检索提高了指标;然而,我们的实验表明,这很大程度上取决于查询、块大小、块重叠和其他变量。因此,进行实验以优化此技术的收益至关重要。