Chroma 读取器¶
如果你在 colab 上打开此 Notebook,你可能需要安装 LlamaIndex 🦙。
In [ ]
已复制!
%pip install llama-index-readers-chroma
%pip install llama-index-readers-chroma
In [ ]
已复制!
!pip install llama-index
!pip install llama-index
In [ ]
已复制!
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
In [ ]
已复制!
from llama_index.readers.chroma import ChromaReader
from llama_index.readers.chroma import ChromaReader
In [ ]
已复制!
# The chroma reader loads data from a persisted Chroma collection.
# This requires a collection name and a persist directory.
reader = ChromaReader(
collection_name="chroma_collection",
persist_directory="examples/data_connectors/chroma_collection",
)
# chroma 读取器从持久化的 Chroma collection 加载数据。 # 这需要一个 collection 名称和一个持久化目录。 reader = ChromaReader( collection_name="chroma_collection", persist_directory="examples/data_connectors/chroma_collection", )
In [ ]
已复制!
# the query_vector is an embedding representation of your query.
# Example query vector:
# query_vector=[0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]
query_vector = [n1, n2, n3, ...]
# query_vector 是你的查询的嵌入表示。 # 示例查询向量: # query_vector=[0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3] query_vector = [n1, n2, n3, ...]
In [ ]
已复制!
# NOTE: Required args are collection_name, query_vector.
# See the Python client: https://github.com/chroma-core/chroma
# for more details.
documents = reader.load_data(
collection_name="demo", query_vector=query_vector, limit=5
)
# 注意:必需参数是 collection_name, query_vector。 # 更多详情请参阅 Python 客户端:https://github.com/chroma-core/chroma # for more details. documents = reader.load_data( collection_name="demo", query_vector=query_vector, limit=5 )
创建索引¶
In [ ]
已复制!
from llama_index.core import SummaryIndex
index = SummaryIndex.from_documents(documents)
from llama_index.core import SummaryIndex index = SummaryIndex.from_documents(documents)
In [ ]
已复制!
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query("<query_text>")
# 设置日志级别为 DEBUG 以获取更详细的输出 query_engine = index.as_query_engine() response = query_engine.query("")
In [ ]
已复制!
display(Markdown(f"<b>{response}</b>"))
display(Markdown(f"{response}"))