Qdrant 读取器¶
输入 [ ]
已复制!
%pip install llama-index-readers-qdrant
%pip install llama-index-readers-qdrant
输入 [ ]
已复制!
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
如果您正在 Colab 中打开此 Notebook,您可能需要安装 LlamaIndex 🦙。
输入 [ ]
已复制!
!pip install llama-index
!pip install llama-index
输入 [ ]
已复制!
from llama_index.readers.qdrant import QdrantReader
from llama_index.readers.qdrant import QdrantReader
输入 [ ]
已复制!
reader = QdrantReader(host="localhost")
reader = QdrantReader(host="localhost")
输入 [ ]
已复制!
# the query_vector is an embedding representation of your query_vector
# Example query vector:
# query_vector=[0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]
query_vector = [n1, n2, n3, ...]
# query_vector 是你的查询向量的嵌入表示 # 示例查询向量: # query_vector=[0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3] query_vector = [n1, n2, n3, ...]
输入 [ ]
已复制!
# NOTE: Required args are collection_name, query_vector.
# See the Python client: https://github.com/qdrant/qdrant_client
# for more details.
documents = reader.load_data(
collection_name="demo", query_vector=query_vector, limit=5
)
# 注意:必需的参数是 collection_name, query_vector. # 更多详情请参阅 Python 客户端:https://github.com/qdrant/qdrant_client documents = reader.load_data( collection_name="demo", query_vector=query_vector, limit=5 )
创建索引¶
输入 [ ]
已复制!
index = SummaryIndex.from_documents(documents)
index = SummaryIndex.from_documents(documents)
输入 [ ]
已复制!
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query("<query_text>")
# 将 Logging 设置为 DEBUG 以获取更详细的输出 query_engine = index.as_query_engine() response = query_engine.query("")
输入 [ ]
已复制!
display(Markdown(f"<b>{response}</b>"))
display(Markdown(f"{response}"))