Dynamo DB Docstore演示¶
本指南向您展示如何直接使用由DynamoDB支持的DocumentStore
抽象。通过将节点放入文档存储,您可以在同一底层文档存储上定义多个索引,而不是在不同索引之间重复数据。
如果您在Colab上打开此Notebook,您可能需要安装LlamaIndex 🦙。
In [ ]
已复制!
%pip install llama-index-storage-docstore-dynamodb
%pip install llama-index-storage-index-store-dynamodb
%pip install llama-index-vector-stores-dynamodb
%pip install llama-index-llms-openai
%pip install llama-index-storage-docstore-dynamodb %pip install llama-index-storage-index-store-dynamodb %pip install llama-index-vector-stores-dynamodb %pip install llama-index-llms-openai
In [ ]
已复制!
!pip install llama-index
!pip install llama-index
In [ ]
已复制!
import nest_asyncio
nest_asyncio.apply()
import nest_asyncio nest_asyncio.apply()
In [ ]
已复制!
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
In [ ]
已复制!
from llama_index.core import SimpleDirectoryReader, StorageContext
from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex
from llama_index.core import SummaryIndex
from llama_index.llms.openai import OpenAI
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import Settings
from llama_index.core import SimpleDirectoryReader, StorageContext from llama_index.core import VectorStoreIndex, SimpleKeywordTableIndex from llama_index.core import SummaryIndex from llama_index.llms.openai import OpenAI from llama_index.core.response.notebook_utils import display_response from llama_index.core import Settings
下载数据¶
In [ ]
已复制!
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
!mkdir -p 'data/paul_graham/' !wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
加载文档¶
In [ ]
已复制!
reader = SimpleDirectoryReader("./data/paul_graham/")
documents = reader.load_data()
reader = SimpleDirectoryReader("./data/paul_graham/") documents = reader.load_data()
解析为节点¶
In [ ]
已复制!
from llama_index.core.node_parser import SentenceSplitter
nodes = SentenceSplitter().get_nodes_from_documents(documents)
from llama_index.core.node_parser import SentenceSplitter nodes = SentenceSplitter().get_nodes_from_documents(documents)
添加到文档存储¶
In [ ]
已复制!
TABLE_NAME = os.environ["DYNAMODB_TABLE_NAME"]
TABLE_NAME = os.environ["DYNAMODB_TABLE_NAME"]
In [ ]
已复制!
from llama_index.storage.docstore.dynamodb import DynamoDBDocumentStore
from llama_index.storage.index_store.dynamodb import DynamoDBIndexStore
from llama_index.vector_stores.dynamodb import DynamoDBVectorStore
from llama_index.storage.docstore.dynamodb import DynamoDBDocumentStore from llama_index.storage.index_store.dynamodb import DynamoDBIndexStore from llama_index.vector_stores.dynamodb import DynamoDBVectorStore
In [ ]
已复制!
storage_context = StorageContext.from_defaults(
docstore=DynamoDBDocumentStore.from_table_name(table_name=TABLE_NAME),
index_store=DynamoDBIndexStore.from_table_name(table_name=TABLE_NAME),
vector_store=DynamoDBVectorStore.from_table_name(table_name=TABLE_NAME),
)
storage_context = StorageContext.from_defaults( docstore=DynamoDBDocumentStore.from_table_name(table_name=TABLE_NAME), index_store=DynamoDBIndexStore.from_table_name(table_name=TABLE_NAME), vector_store=DynamoDBVectorStore.from_table_name(table_name=TABLE_NAME), )
In [ ]
已复制!
storage_context.docstore.add_documents(nodes)
storage_context.docstore.add_documents(nodes)
定义并添加多个索引¶
每个索引使用相同的底层节点。
In [ ]
已复制!
# https://gpt-index.readthedocs.io/en/stable/api_reference/indices/list.html
summary_index = SummaryIndex(nodes, storage_context=storage_context)
# https://gpt-index.readthedocs.io/en/stable/api_reference/indices/list.html summary_index = SummaryIndex(nodes, storage_context=storage_context)
In [ ]
已复制!
# https://gpt-index.readthedocs.io/en/stable/api_reference/indices/vector_store.html
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
# https://gpt-index.readthedocs.io/en/stable/api_reference/indices/vector_store.html vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
In [ ]
已复制!
# https://gpt-index.readthedocs.io/en/stable/api_reference/indices/table.html
keyword_table_index = SimpleKeywordTableIndex(
nodes, storage_context=storage_context
)
# https://gpt-index.readthedocs.io/en/stable/api_reference/indices/table.html keyword_table_index = SimpleKeywordTableIndex( nodes, storage_context=storage_context )
In [ ]
已复制!
# NOTE: the docstore still has the same nodes
len(storage_context.docstore.docs)
# NOTE: the docstore still has the same nodes len(storage_context.docstore.docs)
测试保存和加载¶
In [ ]
已复制!
# NOTE: docstore, index_store, and vector_index is persisted in DynamoDB by default when they are created
# NOTE: You can also persist simple vector store to disk by using the command below
storage_context.persist()
# NOTE: docstore, index_store, and vector_index is persisted in DynamoDB by default when they are created # NOTE: You can also persist simple vector store to disk by using the command below storage_context.persist()
In [ ]
已复制!
# note down index IDs
list_id = summary_index.index_id
vector_id = vector_index.index_id
keyword_id = keyword_table_index.index_id
# note down index IDs list_id = summary_index.index_id vector_id = vector_index.index_id keyword_id = keyword_table_index.index_id
In [ ]
已复制!
from llama_index.core import load_index_from_storage
# re-create storage context
storage_context = StorageContext.from_defaults(
docstore=DynamoDBDocumentStore.from_table_name(table_name=TABLE_NAME),
index_store=DynamoDBIndexStore.from_table_name(table_name=TABLE_NAME),
vector_store=DynamoDBVectorStore.from_table_name(table_name=TABLE_NAME),
)
summary_index = load_index_from_storage(
storage_context=storage_context, index_id=list_id
)
keyword_table_index = load_index_from_storage(
storage_context=storage_context, index_id=keyword_id
)
# You need to add "vector_store=DynamoDBVectorStore.from_table_name(table_name=TABLE_NAME)" to StorageContext to load vector index from DynamoDB
vector_index = load_index_from_storage(
storage_context=storage_context, index_id=vector_id
)
from llama_index.core import load_index_from_storage # re-create storage context storage_context = StorageContext.from_defaults( docstore=DynamoDBDocumentStore.from_table_name(table_name=TABLE_NAME), index_store=DynamoDBIndexStore.from_table_name(table_name=TABLE_NAME), vector_store=DynamoDBVectorStore.from_table_name(table_name=TABLE_NAME), ) summary_index = load_index_from_storage( storage_context=storage_context, index_id=list_id ) keyword_table_index = load_index_from_storage( storage_context=storage_context, index_id=keyword_id ) # You need to add "vector_store=DynamoDBVectorStore.from_table_name(table_name=TABLE_NAME)" to StorageContext to load vector index from DynamoDB vector_index = load_index_from_storage( storage_context=storage_context, index_id=vector_id )
测试一些查询¶
In [ ]
已复制!
chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo")
Settings.llm = chatgpt
Settings.chunk_size = 1024
chatgpt = OpenAI(temperature=0, model="gpt-3.5-turbo") Settings.llm = chatgpt Settings.chunk_size = 1024
In [ ]
已复制!
query_engine = summary_index.as_query_engine()
list_response = query_engine.query("What is a summary of this document?")
query_engine = summary_index.as_query_engine() list_response = query_engine.query("What is a summary of this document?")
In [ ]
已复制!
display_response(list_response)
display_response(list_response)
In [ ]
已复制!
query_engine = vector_index.as_query_engine()
vector_response = query_engine.query("What did the author do growing up?")
query_engine = vector_index.as_query_engine() vector_response = query_engine.query("What did the author do growing up?")
In [ ]
已复制!
display_response(vector_response)
display_response(vector_response)
In [ ]
已复制!
query_engine = keyword_table_index.as_query_engine()
keyword_response = query_engine.query(
"What did the author do after his time at YC?"
)
query_engine = keyword_table_index.as_query_engine() keyword_response = query_engine.query( "What did the author do after his time at YC?" )
In [ ]
已复制!
display_response(keyword_response)
display_response(keyword_response)