Bedrock 嵌入¶
如果你在 colab 上打开这个 Notebook,你可能需要安装 LlamaIndex 🦙。
In [ ]
已复制!
%pip install llama-index-embeddings-bedrock
%pip install llama-index-embeddings-bedrock
In [ ]
已复制!
import os
from llama_index.embeddings.bedrock import BedrockEmbedding
import os from llama_index.embeddings.bedrock import BedrockEmbedding
In [ ]
已复制!
embed_model = BedrockEmbedding(
aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID"),
aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY"),
aws_session_token=os.getenv("AWS_SESSION_TOKEN"),
region_name="<aws-region>",
profile_name="<aws-profile>",
)
embed_model = BedrockEmbedding( aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID"), aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY"), aws_session_token=os.getenv("AWS_SESSION_TOKEN"), region_name="", profile_name="",
)
In [ ]
已复制!
embedding = embed_model.get_text_embedding("hello world")
embedding = embed_model.get_text_embedding("hello world")
列出支持的模型¶
要检查 LlamaIndex 上 Amazon Bedrock 支持的模型列表,请按如下方式调用 BedrockEmbedding.list_supported_models()
。
In [ ]
已复制!
from llama_index.embeddings.bedrock import BedrockEmbedding
import json
supported_models = BedrockEmbedding.list_supported_models()
print(json.dumps(supported_models, indent=2))
from llama_index.embeddings.bedrock import BedrockEmbedding import json supported_models = BedrockEmbedding.list_supported_models() print(json.dumps(supported_models, indent=2))
提供商:Amazon¶
Amazon Bedrock Titan 嵌入。
In [ ]
已复制!
from llama_index.embeddings.bedrock import BedrockEmbedding
model = BedrockEmbedding(model_name="amazon.titan-embed-g1-text-02")
embeddings = model.get_text_embedding("hello world")
print(embeddings)
from llama_index.embeddings.bedrock import BedrockEmbedding model = BedrockEmbedding(model_name="amazon.titan-embed-g1-text-02") embeddings = model.get_text_embedding("hello world") print(embeddings)
In [ ]
已复制!
model = BedrockEmbedding(model_name="cohere.embed-english-v3")
coherePayload = ["This is a test document", "This is another test document"]
embed1 = model.get_text_embedding("This is a test document")
print(embed1)
embeddings = model.get_text_embedding_batch(coherePayload)
print(embeddings)
model = BedrockEmbedding(model_name="cohere.embed-english-v3") coherePayload = ["This is a test document", "This is another test document"] embed1 = model.get_text_embedding("This is a test document") print(embed1) embeddings = model.get_text_embedding_batch(coherePayload) print(embeddings)
来自 Cohere 的多语言嵌入¶
In [ ]
已复制!
model = BedrockEmbedding(model_name="cohere.embed-multilingual-v3")
coherePayload = [
"This is a test document",
"తెలుగు అనేది ద్రావిడ భాషల కుటుంబానికి చెందిన భాష.",
"Esto es una prueba de documento multilingüe.",
"攻殻機動隊",
"Combien de temps ça va prendre ?",
"Документ проверен",
]
embeddings = model.get_text_embedding_batch(coherePayload)
print(embeddings)
model = BedrockEmbedding(model_name="cohere.embed-multilingual-v3") coherePayload = [ "This is a test document", "తెలుగు అనేది ద్రావిడ భాషల కుటుంబానికి చెందిన భాష.", "Esto es una prueba de documento multilingüe.", "攻殻機動隊", "Combien de temps ça va prendre ?", "Документ проверен", ] embeddings = model.get_text_embedding_batch(coherePayload) print(embeddings)