输入 [ ]
已复制!
%pip install llama-index-llms-premai
%pip install llama-index-llms-premai
输入 [ ]
已复制!
from llama_index.embeddings.premai import PremAIEmbeddings
from llama_index.embeddings.premai import PremAIEmbeddings
输入 [ ]
已复制!
import os
import getpass
if os.environ.get("PREMAI_API_KEY") is None:
os.environ["PREMAI_API_KEY"] = getpass.getpass("PremAI API Key:")
prem_embedding = PremAIEmbeddings(
project_id=8, model_name="text-embedding-3-large"
)
import os import getpass if os.environ.get("PREMAI_API_KEY") is None: os.environ["PREMAI_API_KEY"] = getpass.getpass("PremAI API Key:") prem_embedding = PremAIEmbeddings( project_id=8, model_name="text-embedding-3-large" )
调用嵌入模型¶
现在一切就绪。现在让我们开始使用我们的嵌入模型,首先是一个单独的查询,然后是多个查询(也称为文档)
输入 [ ]
已复制!
query = "Hello, this is a test query"
query_result = prem_embedding.get_text_embedding(query)
query = "Hello, this is a test query" query_result = prem_embedding.get_text_embedding(query)
输入 [ ]
已复制!
print(f"Dimension of embeddings: {len(query_result)}")
print(f"Dimension of embeddings: {len(query_result)}")
Dimension of embeddings: 3072
输入 [ ]
已复制!
query_result[:5]
query_result[:5]
输出 [ ]
[-0.02129288576543331, 0.0008162345038726926, -0.004556538071483374, 0.02918623760342598, -0.02547479420900345]