Nebius AI LLM¶
本 notebook 演示了如何将来自 Nebius AI Studio 的 LLMs 与 LlamaIndex 一起使用。Nebius AI Studio 实现了所有可用于商业用途的最新 LLMs。
首先,让我们安装 LlamaIndex 和 Nebius AI Studio 的依赖项。
In [ ]
已复制!
%pip install llama-index-llms-nebius llama-index
%pip install llama-index-llms-nebius llama-index
从下面的系统变量上传您的 Nebius AI Studio 密钥或直接插入。您可以免费注册 Nebius AI Studio 并在API Keys 部分获取密钥。"
In [ ]
已复制!
import os
NEBIUS_API_KEY = os.getenv("NEBIUS_API_KEY") # NEBIUS_API_KEY = ""
import os NEBIUS_API_KEY = os.getenv("NEBIUS_API_KEY") # NEBIUS_API_KEY = ""
In [ ]
已复制!
from llama_index.llms.nebius import NebiusLLM
llm = NebiusLLM(
api_key=NEBIUS_API_KEY, model="meta-llama/Llama-3.3-70B-Instruct-fast"
)
from llama_index.llms.nebius import NebiusLLM llm = NebiusLLM( api_key=NEBIUS_API_KEY, model="meta-llama/Llama-3.3-70B-Instruct-fast" )
None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.
使用 prompt 调用 complete
¶
In [ ]
已复制!
response = llm.complete("Amsterdam is the capital of ")
print(response)
response = llm.complete("Amsterdam is the capital of ") print(response)
The Netherlands! Amsterdam is indeed the capital and largest city of the Netherlands.
使用消息列表调用 chat
¶
In [ ]
已复制!
from llama_index.core.llms import ChatMessage
messages = [
ChatMessage(role="system", content="You are a helpful AI assistant."),
ChatMessage(
role="user",
content="Answer briefly: who is Wall-e?",
),
]
response = llm.chat(messages)
print(response)
from llama_index.core.llms import ChatMessage messages = [ ChatMessage(role="system", content="你是一个有用的AI助手。"), ChatMessage( role="user", content="简短回答:谁是Wall-e?", ), ] response = llm.chat(messages) print(response)
assistant: WALL-E is a small waste-collecting robot and the main character in the 2008 Pixar animated film of the same name.
流式处理¶
使用 stream_complete
端点¶
In [ ]
已复制!
response = llm.stream_complete("Amsterdam is the capital of ")
for r in response:
print(r.delta, end="")
response = llm.stream_complete("Amsterdam is the capital of ") for r in response: print(r.delta, end="")
The Netherlands! Amsterdam is indeed the capital and largest city of the Netherlands.
使用消息列表调用 stream_chat
¶
In [ ]
已复制!
from llama_index.core.llms import ChatMessage
messages = [
ChatMessage(role="system", content="You are a helpful AI assistant."),
ChatMessage(
role="user",
content="Answer briefly: who is Wall-e?",
),
]
response = llm.stream_chat(messages)
for r in response:
print(r.delta, end="")
from llama_index.core.llms import ChatMessage messages = [ ChatMessage(role="system", content="你是一个有用的AI助手。"), ChatMessage( role="user", content="简短回答:谁是Wall-e?", ), ] response = llm.stream_chat(messages) for r in response: print(r.delta, end="")
WALL-E is a small waste-collecting robot and the main character in the 2008 Pixar animated film of the same name.