在下面的行中,我们将安装此演示所需的软件包。
In [ ]
已复制!
%pip install llama-index-llms-openvino transformers huggingface_hub
%pip install llama-index-llms-openvino transformers huggingface_hub
现在我们已完成设置,开始尝试吧。
如果您正在 Colab 上打开此 Notebook,则可能需要安装 LlamaIndex 🦙。
In [ ]
已复制!
!pip install llama-index
!pip install llama-index
In [ ]
已复制!
from llama_index.llms.openvino import OpenVINOLLM
from llama_index.llms.openvino import OpenVINOLLM
In [ ]
已复制!
def messages_to_prompt(messages):
prompt = ""
for message in messages:
if message.role == "system":
prompt += f"<|system|>\n{message.content}</s>\n"
elif message.role == "user":
prompt += f"<|user|>\n{message.content}</s>\n"
elif message.role == "assistant":
prompt += f"<|assistant|>\n{message.content}</s>\n"
# ensure we start with a system prompt, insert blank if needed
if not prompt.startswith("<|system|>\n"):
prompt = "<|system|>\n</s>\n" + prompt
# add final assistant prompt
prompt = prompt + "<|assistant|>\n"
return prompt
def completion_to_prompt(completion):
return f"<|system|>\n</s>\n<|user|>\n{completion}</s>\n<|assistant|>\n"
def messages_to_prompt(messages): prompt = "" for message in messages: if message.role == "system": prompt += f"<|system|>\n{message.content}\n" elif message.role == "user": prompt += f"<|user|>\n{message.content}\n" elif message.role == "assistant": prompt += f"<|assistant|>\n{message.content}\n" # ensure we start with a system prompt, insert blank if needed if not prompt.startswith("<|system|>\n"): prompt = "<|system|>\n\n" + prompt # add final assistant prompt prompt = prompt + "<|assistant|>\n" return prompt def completion_to_prompt(completion): return f"<|system|>\n\n<|user|>\n{completion}\n<|assistant|>\n"
In [ ]
已复制!
ov_config = {
"PERFORMANCE_HINT": "LATENCY",
"NUM_STREAMS": "1",
"CACHE_DIR": "",
}
ov_llm = OpenVINOLLM(
model_id_or_path="HuggingFaceH4/zephyr-7b-beta",
context_window=3900,
max_new_tokens=256,
model_kwargs={"ov_config": ov_config},
generate_kwargs={"temperature": 0.7, "top_k": 50, "top_p": 0.95},
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
device_map="cpu",
)
ov_config = { "PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": "", } ov_llm = OpenVINOLLM( model_id_or_path="HuggingFaceH4/zephyr-7b-beta", context_window=3900, max_new_tokens=256, model_kwargs={"ov_config": ov_config}, generate_kwargs={"temperature": 0.7, "top_k": 50, "top_p": 0.95}, messages_to_prompt=messages_to_prompt, completion_to_prompt=completion_to_prompt, device_map="cpu", )
In [ ]
已复制!
response = ov_llm.complete("What is the meaning of life?")
print(str(response))
response = ov_llm.complete("What is the meaning of life?") print(str(response))
In [ ]
已复制!
!optimum-cli export openvino --model HuggingFaceH4/zephyr-7b-beta ov_model_dir
!optimum-cli export openvino --model HuggingFaceH4/zephyr-7b-beta ov_model_dir
建议使用 --weight-format
应用 8 或 4 位权重量化,以减少推理延迟和模型占用空间。
In [ ]
已复制!
!optimum-cli export openvino --model HuggingFaceH4/zephyr-7b-beta --weight-format int8 ov_model_dir
!optimum-cli export openvino --model HuggingFaceH4/zephyr-7b-beta --weight-format int8 ov_model_dir
In [ ]
已复制!
!optimum-cli export openvino --model HuggingFaceH4/zephyr-7b-beta --weight-format int4 ov_model_dir
!optimum-cli export openvino --model HuggingFaceH4/zephyr-7b-beta --weight-format int4 ov_model_dir
In [ ]
已复制!
ov_llm = OpenVINOLLM(
model_id_or_path="ov_model_dir",
context_window=3900,
max_new_tokens=256,
model_kwargs={"ov_config": ov_config},
generate_kwargs={"temperature": 0.7, "top_k": 50, "top_p": 0.95},
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
device_map="gpu",
)
ov_llm = OpenVINOLLM( model_id_or_path="ov_model_dir", context_window=3900, max_new_tokens=256, model_kwargs={"ov_config": ov_config}, generate_kwargs={"temperature": 0.7, "top_k": 50, "top_p": 0.95}, messages_to_prompt=messages_to_prompt, completion_to_prompt=completion_to_prompt, device_map="gpu", )
您可以通过激活的动态量化和 KV 缓存量化获得额外的推理速度提升。这些选项可以通过如下 ov_config
启用
In [ ]
已复制!
ov_config = {
"KV_CACHE_PRECISION": "u8",
"DYNAMIC_QUANTIZATION_GROUP_SIZE": "32",
"PERFORMANCE_HINT": "LATENCY",
"NUM_STREAMS": "1",
"CACHE_DIR": "",
}
ov_config = { "KV_CACHE_PRECISION": "u8", "DYNAMIC_QUANTIZATION_GROUP_SIZE": "32", "PERFORMANCE_HINT": "LATENCY", "NUM_STREAMS": "1", "CACHE_DIR": "", }
流式传输¶
使用 stream_complete
端点
In [ ]
已复制!
response = ov_llm.stream_complete("Who is Paul Graham?")
for r in response:
print(r.delta, end="")
response = ov_llm.stream_complete("Who is Paul Graham?") for r in response: print(r.delta, end="")
使用 stream_chat
端点
In [ ]
已复制!
from llama_index.core.llms import ChatMessage
messages = [
ChatMessage(
role="system", content="You are a pirate with a colorful personality"
),
ChatMessage(role="user", content="What is your name"),
]
resp = ov_llm.stream_chat(messages)
for r in resp:
print(r.delta, end="")
from llama_index.core.llms import ChatMessage messages = [ ChatMessage( role="system", content="You are a pirate with a colorful personality" ), ChatMessage(role="user", content="What is your name"), ] resp = ov_llm.stream_chat(messages) for r in resp: print(r.delta, end="")
欲了解更多信息,请参阅