Perplexity¶
Perplexity 的 Sonar API 提供了一个解决方案,它结合了实时、基于事实的网络搜索与高级推理和深度研究能力。
何时使用
- 当您的应用需要直接从网络获取及时、相关的数据时,例如动态内容更新或当前事件追踪。
- 对于需要支持复杂用户查询、集成推理和深度研究的产品,如数字助手或高级搜索引擎。
在开始之前,请确保您已安装 llama_index
In [ ]
已复制!
%pip install llama-index-llms-perplexity
%pip install llama-index-llms-perplexity
In [ ]
已复制!
!pip install llama-index
!pip install llama-index
初始设置¶
截至 2025 年 4 月 12 日,LLaMa Index 中的 Perplexity LLM 类支持以下模型:
模型 | 上下文长度 | 模型类型 |
---|---|---|
sonar-deep-research |
128k | 聊天完成 |
sonar-reasoning-pro |
128k | 聊天完成 |
sonar-reasoning |
128k | 聊天完成 |
sonar-pro |
200k | 聊天完成 |
sonar |
128k | 聊天完成 |
r1-1776 |
128k | 聊天完成 |
sonar-pro
的最大输出 token 限制为 8k。- 推理模型输出 Chain of Thought 响应。
r1-1776
是一个不使用 Perplexity 搜索子系统的离线聊天模型。
In [ ]
已复制!
import getpass
import os
if "PPLX_API_KEY" not in os.environ:
os.environ["PPLX_API_KEY"] = getpass.getpass(
"Enter your Perplexity API key: "
)
import getpass import os if "PPLX_API_KEY" not in os.environ: os.environ["PPLX_API_KEY"] = getpass.getpass( "Enter your Perplexity API key: " )
In [ ]
已复制!
from llama_index.llms.perplexity import Perplexity
PPLX_API_KEY = __import__("os").environ.get("PPLX_API_KEY")
llm = Perplexity(api_key=PPLX_API_KEY, model="sonar-pro", temperature=0.2)
from llama_index.llms.perplexity import Perplexity PPLX_API_KEY = __import__("os").environ.get("PPLX_API_KEY") llm = Perplexity(api_key=PPLX_API_KEY, model="sonar-pro", temperature=0.2)
In [ ]
已复制!
# Import the ChatMessage class from the llama_index library.
from llama_index.core.llms import ChatMessage
# Create a list of dictionaries where each dictionary represents a chat message.
# Each dictionary contains a 'role' key (e.g., system or user) and a 'content' key with the corresponding message.
messages_dict = [
{"role": "system", "content": "Be precise and concise."},
{
"role": "user",
"content": "Tell me the latest news about the US Stock Market.",
},
]
# Convert each dictionary in the list to a ChatMessage object using unpacking (**msg) in a list comprehension.
messages = [ChatMessage(**msg) for msg in messages_dict]
# Print the list of ChatMessage objects to verify the conversion.
print(messages)
# Import the ChatMessage class from the llama_index library. from llama_index.core.llms import ChatMessage # Create a list of dictionaries where each dictionary represents a chat message. # Each dictionary contains a 'role' key (e.g., system or user) and a 'content' key with the corresponding message. messages_dict = [ {"role": "system", "content": "Be precise and concise."}, { "role": "user", "content": "Tell me the latest news about the US Stock Market.", }, ] # Convert each dictionary in the list to a ChatMessage object using unpacking (**msg) in a list comprehension. messages = [ChatMessage(**msg) for msg in messages_dict] # Print the list of ChatMessage objects to verify the conversion. print(messages)
[ChatMessage(role=<MessageRole.SYSTEM: 'system'>, additional_kwargs={}, blocks=[TextBlock(block_type='text', text='Be precise and concise.')]), ChatMessage(role=<MessageRole.USER: 'user'>, additional_kwargs={}, blocks=[TextBlock(block_type='text', text='Tell me the latest news about the US Stock Market.')])]
聊天¶
In [ ]
已复制!
response = llm.chat(messages)
print(response)
response = llm.chat(messages) print(response)
assistant: The latest update on the U.S. stock market indicates a strong performance recently. A significant 10% rally occurred on Wednesday, which contributed substantially to market gains. Additionally, the market closed strongly on Friday, with a 2% increase, ending near the intraday high. This reflects robust momentum, particularly in mega and large-cap growth stocks[1].
异步聊天¶
对于异步对话处理,使用 achat
方法发送消息并等待响应
In [ ]
已复制!
# Asynchronously send the list of chat messages to the LLM using the 'achat' method.
# This method returns a ChatResponse object containing the model's answer.
response = await llm.achat(messages)
print(response)
# Asynchronously send the list of chat messages to the LLM using the 'achat' method. # This method returns a ChatResponse object containing the model's answer. response = await llm.achat(messages) print(response)
assistant: The U.S. stock market has recently experienced significant gains. A major rally on Wednesday resulted in a 10% surge, contributing substantially to the market's overall upside. Additionally, the market closed strongly on Friday, with a 2% increase, ending near the intraday high. This performance highlights robust momentum, particularly in mega-cap and large-cap growth stocks[1].
流式聊天¶
如果您希望实时逐 token 接收响应,请使用 stream_chat
方法
In [ ]
已复制!
# Call the stream_chat method on the LLM instance, which returns a generator or iterable
# for streaming the chat response one delta (token or chunk) at a time.
response = llm.stream_chat(messages)
# Iterate over each streaming response chunk.
for r in response:
# Print the delta (the new chunk of generated text) without adding a newline.
print(r.delta, end="")
# Call the stream_chat method on the LLM instance, which returns a generator or iterable # for streaming the chat response one delta (token or chunk) at a time. response = llm.stream_chat(messages) # Iterate over each streaming response chunk. for r in response: # Print the delta (the new chunk of generated text) without adding a newline. print(r.delta, end="")
The latest news about the U.S. stock market indicates a strong performance recently. The New York Stock Exchange (NYSE) experienced a significant rally, with a 10% surge on Wednesday, followed by a 2% gain on Friday. This upward momentum brought the market near its intraday high, driven by strength in mega-cap and large-cap growth stocks[1].
异步流式聊天¶
类似地,对于异步流式传输,astream_chat
方法提供了异步处理响应 deltas 的方式
In [ ]
已复制!
# Asynchronously call the astream_chat method on the LLM instance,
# which returns an asynchronous generator that yields response chunks.
resp = await llm.astream_chat(messages)
# Asynchronously iterate over each response chunk from the generator.
# For each chunk (delta), print the chunk's text content.
async for delta in resp:
print(delta.delta, end="")
# Asynchronously call the astream_chat method on the LLM instance, # which returns an asynchronous generator that yields response chunks. resp = await llm.astream_chat(messages) # Asynchronously iterate over each response chunk from the generator. # For each chunk (delta), print the chunk's text content. async for delta in resp: print(delta.delta, end="")
The latest updates on the U.S. stock market indicate significant positive momentum. The New York Stock Exchange (NYSE) experienced a strong rally, with a notable 10% surge on Wednesday. This was followed by a 2% gain on Friday, closing near the intraday high. The market's performance has been driven by mega and large-cap growth stocks, contributing to the overall upside[1].
工具调用¶
Perplexity 模型可以轻松地包装成 llamaindex 工具,以便在其数据处理或对话工作流中被调用。此工具使用由 Perplexity 提供支持的实时生成式搜索,并配置了更新的默认模型 ("sonar-pro") 并启用了 enable_search_classifier 参数。
下面是定义和注册工具的示例
In [ ]
已复制!
from llama_index.core.tools import FunctionTool
from llama_index.llms.perplexity import Perplexity
from llama_index.core.llms import ChatMessage
def query_perplexity(query: str) -> str:
"""
Queries the Perplexity API via the LlamaIndex integration.
This function instantiates a Perplexity LLM with updated default settings
(using model "sonar-pro" and enabling search classifier so that the API can
intelligently decide if a search is needed), wraps the query into a ChatMessage,
and returns the generated response content.
"""
pplx_api_key = (
"your-perplexity-api-key" # Replace with your actual API key
)
llm = Perplexity(
api_key=pplx_api_key,
model="sonar-pro",
temperature=0.7,
enable_search_classifier=True, # This will determine if the search component is necessary in this particular context
)
messages = [ChatMessage(role="user", content=query)]
response = llm.chat(messages)
return response.message.content
# Create the tool from the query_perplexity function
query_perplexity_tool = FunctionTool.from_defaults(fn=query_perplexity)
from llama_index.core.tools import FunctionTool from llama_index.llms.perplexity import Perplexity from llama_index.core.llms import ChatMessage def query_perplexity(query: str) -> str: """ Queries the Perplexity API via the LlamaIndex integration. This function instantiates a Perplexity LLM with updated default settings (using model "sonar-pro" and enabling search classifier so that the API can intelligently decide if a search is needed), wraps the query into a ChatMessage, and returns the generated response content. """ pplx_api_key = ( "your-perplexity-api-key" # Replace with your actual API key ) llm = Perplexity( api_key=pplx_api_key, model="sonar-pro", temperature=0.7, enable_search_classifier=True, # This will determine if the search component is necessary in this particular context ) messages = [ChatMessage(role="user", content=query)] response = llm.chat(messages) return response.message.content # Create the tool from the query_perplexity function query_perplexity_tool = FunctionTool.from_defaults(fn=query_perplexity)