使用 RichPromptTemplate 构建¶
RichPromptTemplate
在 llama-index-core==0.12.27
中引入,它是一个新的提示模板,允许你使用 Jinja 语法构建具有丰富格式的提示。
使用它,你可以构建
- 带有变量的基本提示
- 单个字符串中的聊天提示模板
- 接受文本、图像和音频的提示
- 循环或解析对象的高级提示
- 等等!
让我们看一些示例。
In [ ]
已复制!
%pip install llama-index
%pip install llama-index
带有变量的基本提示¶
在 RichPromptTemplate
中,你可以使用 {{ }}
语法将变量插入到你的提示中。
In [ ]
已复制!
from llama_index.core.prompts import RichPromptTemplate
prompt = RichPromptTemplate("Hello, {{ name }}!")
from llama_index.core.prompts import RichPromptTemplate prompt = RichPromptTemplate("Hello, {{ name }}!")
你可以将提示格式化为字符串或聊天消息列表。
In [ ]
已复制!
print(prompt.format(name="John"))
print(prompt.format(name="John"))
Hello, John!
In [ ]
已复制!
print(prompt.format_messages(name="John"))
print(prompt.format_messages(name="John"))
[ChatMessage(role=<MessageRole.USER: 'user'>, additional_kwargs={}, blocks=[TextBlock(block_type='text', text='Hello, John!')])]
聊天提示模板¶
你还可以直接在提示模板中定义聊天消息块。
In [ ]
已复制!
prompt = RichPromptTemplate(
"""
{% chat role="system" %}
You are now chatting with {{ user }}
{% endchat %}
{% chat role="user" %}
{{ user_msg }}
{% endchat %}
"""
)
prompt = RichPromptTemplate( """ {% chat role="system" %} You are now chatting with {{ user }} {% endchat %} {% chat role="user" %} {{ user_msg }} {% endchat %} """ )
In [ ]
已复制!
print(prompt.format_messages(user="John", user_msg="Hello!"))
print(prompt.format_messages(user="John", user_msg="Hello!"))
[ChatMessage(role=<MessageRole.SYSTEM: 'system'>, additional_kwargs={}, blocks=[TextBlock(block_type='text', text='You are now chatting with John')]), ChatMessage(role=<MessageRole.USER: 'user'>, additional_kwargs={}, blocks=[TextBlock(block_type='text', text='Hello!')])]
带有图像和音频的提示¶
假设你使用的 LLM 支持,你也可以在提示中包含图像和音频!
图像¶
In [ ]
已复制!
!wget https://cdn.pixabay.com/photo/2016/07/07/16/46/dice-1502706_640.jpg -O image.png
!wget https://cdn.pixabay.com/photo/2016/07/07/16/46/dice-1502706_640.jpg -O image.png
In [ ]
已复制!
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4o-mini", api_key="sk-...")
prompt = RichPromptTemplate(
"""
Describe the following image:
{{ image_path | image}}
"""
)
from llama_index.llms.openai import OpenAI llm = OpenAI(model="gpt-4o-mini", api_key="sk-...") prompt = RichPromptTemplate( """ Describe the following image: {{ image_path | image}} """ )
In [ ]
已复制!
messages = prompt.format_messages(image_path="./image.png")
response = llm.chat(messages)
print(response.message.content)
messages = prompt.format_messages(image_path="./image.png") response = llm.chat(messages) print(response.message.content)
The image features three white dice with black dots, captured in a monochrome setting. The dice are positioned on a checkered surface, which appears to be a wooden board. The background is blurred, creating a sense of depth, while the focus remains on the dice. The overall composition emphasizes the randomness and chance associated with rolling dice.
音频¶
In [ ]
已复制!
!wget AUDIO_URL = "https://science.nasa.gov/wp-content/uploads/2024/04/sounds-of-mars-one-small-step-earth.wav" -O audio.wav
!wget AUDIO_URL = "https://science.nasa.gov/wp-content/uploads/2024/04/sounds-of-mars-one-small-step-earth.wav" -O audio.wav
In [ ]
已复制!
prompt = RichPromptTemplate(
"""
Describe the following audio:
{{ audio_path | audio }}
"""
)
messages = prompt.format_messages(audio_path="./audio.wav")
prompt = RichPromptTemplate( """ Describe the following audio: {{ audio_path | audio }} """ ) messages = prompt.format_messages(audio_path="./audio.wav")
In [ ]
已复制!
llm = OpenAI(model="gpt-4o-audio-preview", api_key="sk-...")
response = llm.chat(messages)
print(response.message.content)
llm = OpenAI(model="gpt-4o-audio-preview", api_key="sk-...") response = llm.chat(messages) print(response.message.content)
The audio features a famous quote, "That's one small step for man, one giant leap for mankind." This statement was made during a significant historical event, symbolizing a monumental achievement for humanity.
In [ ]
已复制!
text_and_images = [
("This is a test", "./image.png"),
("This is another test", "./image.png"),
]
prompt = RichPromptTemplate(
"""
{% for text, image_path in text_and_images %}
Here is some text:
{{ text }}
Here is an image:
{{ image_path | image }}
{% endfor %}
"""
)
messages = prompt.format_messages(text_and_images=text_and_images)
text_and_images = [ ("This is a test", "./image.png"), ("This is another test", "./image.png"), ] prompt = RichPromptTemplate( """ {% for text, image_path in text_and_images %} Here is some text: {{ text }} Here is an image: {{ image_path | image }} {% endfor %} """ ) messages = prompt.format_messages(text_and_images=text_and_images)
让我们检查消息看看我们有什么。
In [ ]
已复制!
for message in messages:
print(message.role.value)
for block in message.blocks:
print(str(block)[:100])
print("\n")
for message in messages: print(message.role.value) for block in message.blocks: print(str(block)[:100]) print("\n")
user block_type='text' text='Here is some text:' block_type='text' text='This is a test' block_type='text' text='Here is an image:' block_type='image' image=None path=None url=AnyUrl(' block_type='text' text='Here is some text:' block_type='text' text='This is another test' block_type='text' text='Here is an image:' block_type='image' image=None path=None url=AnyUrl('
如你所见,我们有一条包含块列表的消息,每个块代表一个新的内容块(文本或图像)。
(注意:图像在渲染提示时被解析为 base64 编码的字符串)