检索器路由器查询引擎¶
在本教程中,我们定义了一个基于检索器的路由器查询引擎。检索器将选择一组节点,然后我们将依次选择合适的查询引擎。
我们为此使用了新的 ToolRetrieverRouterQueryEngine
类!
设置¶
如果您在 Colab 上打开此 Notebook,您可能需要安装 LlamaIndex 🦙。
In [ ]
已复制!
!pip install llama-index
!pip install llama-index
In [ ]
已复制!
# NOTE: This is ONLY necessary in jupyter notebook.
# Details: Jupyter runs an event-loop behind the scenes.
# This results in nested event-loops when we start an event-loop to make async queries.
# This is normally not allowed, we use nest_asyncio to allow it for convenience.
import nest_asyncio
nest_asyncio.apply()
# NOTE: This is ONLY necessary in jupyter notebook. # Details: Jupyter runs an event-loop behind the scenes. # This results in nested event-loops when we start an event-loop to make async queries. # This is normally not allowed, we use nest_asyncio to allow it for convenience. import nest_asyncio nest_asyncio.apply()
In [ ]
已复制!
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from llama_index.core import SummaryIndex
import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, ) from llama_index.core import SummaryIndex
INFO:numexpr.utils:Note: NumExpr detected 12 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8. Note: NumExpr detected 12 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8. INFO:numexpr.utils:NumExpr defaulting to 8 threads. NumExpr defaulting to 8 threads.
/Users/jerryliu/Programming/gpt_index/.venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm
下载数据
In [ ]
已复制!
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
!mkdir -p 'data/paul_graham/' !wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
加载数据¶
我们首先展示如何将 Document 转换为一组 Node,并插入到 DocumentStore 中。
In [ ]
已复制!
# load documents
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
# load documents documents = SimpleDirectoryReader("./data/paul_graham").load_data()
In [ ]
已复制!
from llama_index.core import Settings
# initialize settings (set chunk size)
Settings.chunk_size = 1024
nodes = Settings.node_parser.get_nodes_from_documents(documents)
from llama_index.core import Settings # initialize settings (set chunk size) Settings.chunk_size = 1024 nodes = Settings.node_parser.get_nodes_from_documents(documents)
In [ ]
已复制!
# initialize storage context (by default it's in-memory)
storage_context = StorageContext.from_defaults()
storage_context.docstore.add_documents(nodes)
# initialize storage context (by default it's in-memory) storage_context = StorageContext.from_defaults() storage_context.docstore.add_documents(nodes)
在同一数据上定义 Summary Index 和 Vector Index¶
In [ ]
已复制!
summary_index = SummaryIndex(nodes, storage_context=storage_context)
vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
summary_index = SummaryIndex(nodes, storage_context=storage_context) vector_index = VectorStoreIndex(nodes, storage_context=storage_context)
INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total LLM token usage: 0 tokens > [build_index_from_nodes] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total embedding token usage: 0 tokens > [build_index_from_nodes] Total embedding token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total LLM token usage: 0 tokens > [build_index_from_nodes] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total embedding token usage: 17038 tokens > [build_index_from_nodes] Total embedding token usage: 17038 tokens
为这些 Index 定义 Query Engine 和 Tool¶
我们为每个 Index 定义一个 Query Engine。然后用我们的 QueryEngineTool
包装它们。
In [ ]
已复制!
from llama_index.core.tools import QueryEngineTool
list_query_engine = summary_index.as_query_engine(
response_mode="tree_summarize", use_async=True
)
vector_query_engine = vector_index.as_query_engine(
response_mode="tree_summarize", use_async=True
)
list_tool = QueryEngineTool.from_defaults(
query_engine=list_query_engine,
description="Useful for questions asking for a biography of the author.",
)
vector_tool = QueryEngineTool.from_defaults(
query_engine=vector_query_engine,
description=(
"Useful for retrieving specific snippets from the author's life, like"
" his time in college, his time in YC, or more."
),
)
from llama_index.core.tools import QueryEngineTool list_query_engine = summary_index.as_query_engine( response_mode="tree_summarize", use_async=True ) vector_query_engine = vector_index.as_query_engine( response_mode="tree_summarize", use_async=True ) list_tool = QueryEngineTool.from_defaults( query_engine=list_query_engine, description="Useful for questions asking for a biography of the author.", ) vector_tool = QueryEngineTool.from_defaults( query_engine=vector_query_engine, description=( "Useful for retrieving specific snippets from the author's life, like" " his time in college, his time in YC, or more." ), )
定义检索增强型路由器查询引擎¶
我们定义了一个由检索机制增强的路由器查询引擎,以帮助处理选择集过大的情况。
为此,我们首先定义一个包含查询引擎工具集的 ObjectIndex
。ObjectIndex
定义了一个底层的索引数据结构(例如向量索引、关键词索引),并且可以在我们的索引中序列化/反序列化 QueryEngineTool 对象。
然后我们使用我们的 ToolRetrieverRouterQueryEngine
类,并传入一个针对 QueryEngineTool
对象的 ObjectRetriever
。ObjectRetriever
对应于我们的 ObjectIndex
。
然后,此检索器可以在查询时动态检索相关的查询引擎。这使我们可以传入任意数量的查询引擎工具,而无需担心提示限制。
In [ ]
已复制!
from llama_index.core import VectorStoreIndex
from llama_index.core.objects import ObjectIndex
obj_index = ObjectIndex.from_objects(
[list_tool, vector_tool],
index_cls=VectorStoreIndex,
)
from llama_index.core import VectorStoreIndex from llama_index.core.objects import ObjectIndex obj_index = ObjectIndex.from_objects( [list_tool, vector_tool], index_cls=VectorStoreIndex, )
INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total LLM token usage: 0 tokens > [build_index_from_nodes] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total embedding token usage: 59 tokens > [build_index_from_nodes] Total embedding token usage: 59 tokens
In [ ]
已复制!
from llama_index.core.query_engine import ToolRetrieverRouterQueryEngine
query_engine = ToolRetrieverRouterQueryEngine(obj_index.as_retriever())
from llama_index.core.query_engine import ToolRetrieverRouterQueryEngine query_engine = ToolRetrieverRouterQueryEngine(obj_index.as_retriever())
In [ ]
已复制!
response = query_engine.query("What is a biography of the author's life?")
response = query_engine.query("What is a biography of the author's life?")
INFO:llama_index.token_counter.token_counter:> [retrieve] Total LLM token usage: 0 tokens > [retrieve] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [retrieve] Total embedding token usage: 10 tokens > [retrieve] Total embedding token usage: 10 tokens INFO:llama_index.token_counter.token_counter:> [retrieve] Total LLM token usage: 0 tokens > [retrieve] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [retrieve] Total embedding token usage: 0 tokens > [retrieve] Total embedding token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [get_response] Total LLM token usage: 2111 tokens > [get_response] Total LLM token usage: 2111 tokens INFO:llama_index.token_counter.token_counter:> [get_response] Total embedding token usage: 0 tokens > [get_response] Total embedding token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [retrieve] Total LLM token usage: 0 tokens > [retrieve] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [retrieve] Total embedding token usage: 0 tokens > [retrieve] Total embedding token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [get_response] Total LLM token usage: 2148 tokens > [get_response] Total LLM token usage: 2148 tokens INFO:llama_index.token_counter.token_counter:> [get_response] Total embedding token usage: 0 tokens > [get_response] Total embedding token usage: 0 tokens INFO:llama_index.query_engine.router_query_engine:Combining responses from multiple query engines. Combining responses from multiple query engines. INFO:llama_index.token_counter.token_counter:> [get_response] Total LLM token usage: 1063 tokens > [get_response] Total LLM token usage: 1063 tokens INFO:llama_index.token_counter.token_counter:> [get_response] Total embedding token usage: 0 tokens > [get_response] Total embedding token usage: 0 tokens
In [ ]
已复制!
print(str(response))
print(str(response))
The author is a creative person who has had a varied and interesting life. They grew up in the US and went to college, but then decided to take a break and pursue their passion for art. They applied to two art schools, RISD in the US and the Accademia di Belli Arti in Florence, and were accepted to both. They chose to go to Florence, where they took the entrance exam and passed. They then spent a year living in Florence, studying art at the Accademia and painting still lives in their bedroom. After their year in Florence, the author returned to the US and completed their BFA program at RISD. They then went on to pursue a PhD in computer science at MIT, where they wrote a dissertation on the evolution of computers. During their time at MIT, they also did consulting work and wrote essays on topics they had been thinking about. After completing their PhD, the author started a software company, Viaweb, which was eventually acquired by Yahoo. They then went on to write essays and articles about their experiences in the tech industry. They also wrote an essay about how to choose what to work on, which was based on their own experience. The author then moved back to Florence, where they found a rent-stabilized apartment and continued to pursue their interest in art. They wrote about their experiences in the art world, and experienced the reactions of readers to their essays. The author is now a successful writer and continues to write essays and articles about topics they are passionate about. In summary, the author's life has been a journey of exploration and creativity. They have experienced a wide range of different things in their life, from art school to computer science to the tech industry, and have used their experiences to inform their writing. They have pursued their passion for art, and have used their knowledge and experience to create meaningful work.
In [ ]
已复制!
response
response
Out [ ]
"\nThe author is a creative person who has had a varied and interesting life. They grew up in the US and went to college, but then decided to take a break and pursue their passion for art. They applied to two art schools, RISD in the US and the Accademia di Belli Arti in Florence, and were accepted to both. They chose to go to Florence, where they took the entrance exam and passed. They then spent a year living in Florence, studying art at the Accademia and painting still lives in their bedroom. After their year in Florence, the author returned to the US and completed their BFA program at RISD. They then went on to pursue a PhD in computer science at MIT, where they wrote a dissertation on the evolution of computers. During their time at MIT, they also did consulting work and wrote essays on topics they had been thinking about. After completing their PhD, the author started a software company, Viaweb, which was eventually acquired by Yahoo. They then went on to write essays and articles about their experiences in the tech industry. They also wrote an essay about how to choose what to work on, which was based on their own experience. The author then moved back to Florence, where they found a rent-stabilized apartment and continued to pursue their interest in art. They wrote about their experiences in the art world, and experienced the reactions of readers to their essays. The author is now a successful writer and continues to write essays and articles about topics they are passionate about. \n\nIn summary, the author's life has been a journey of exploration and creativity. They have experienced a wide range of different things in their life, from art school to computer science to the tech industry, and have used their experiences to inform their writing. They have pursued their passion for art, and have used their knowledge and experience to create meaningful work."
In [ ]
已复制!
response = query_engine.query(
"What did Paul Graham do during his time in college?"
)
response = query_engine.query( "What did Paul Graham do during his time in college?" )
INFO:llama_index.token_counter.token_counter:> [retrieve] Total LLM token usage: 0 tokens > [retrieve] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [retrieve] Total embedding token usage: 11 tokens > [retrieve] Total embedding token usage: 11 tokens INFO:llama_index.token_counter.token_counter:> [retrieve] Total LLM token usage: 0 tokens > [retrieve] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [retrieve] Total embedding token usage: 0 tokens > [retrieve] Total embedding token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [get_response] Total LLM token usage: 1947 tokens > [get_response] Total LLM token usage: 1947 tokens INFO:llama_index.token_counter.token_counter:> [get_response] Total embedding token usage: 0 tokens > [get_response] Total embedding token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [retrieve] Total LLM token usage: 0 tokens > [retrieve] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [retrieve] Total embedding token usage: 0 tokens > [retrieve] Total embedding token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [get_response] Total LLM token usage: 1947 tokens > [get_response] Total LLM token usage: 1947 tokens INFO:llama_index.token_counter.token_counter:> [get_response] Total embedding token usage: 0 tokens > [get_response] Total embedding token usage: 0 tokens INFO:llama_index.query_engine.router_query_engine:Combining responses from multiple query engines. Combining responses from multiple query engines. INFO:llama_index.token_counter.token_counter:> [get_response] Total LLM token usage: 316 tokens > [get_response] Total LLM token usage: 316 tokens INFO:llama_index.token_counter.token_counter:> [get_response] Total embedding token usage: 0 tokens > [get_response] Total embedding token usage: 0 tokens
In [ ]
已复制!
print(str(response))
print(str(response))
Paul Graham studied philosophy in college, but he did not pursue AI. He continued to work on programming outside of school, writing simple games, a program to predict how high his model rockets would fly, and a word processor. He eventually convinced his father to buy him a TRS-80 computer, which he used to further his programming skills.