SQL 路由器查询引擎¶
在本教程中,我们定义一个自定义路由器查询引擎,它可以将查询路由到 SQL 数据库或向量数据库。
注意:任何文本转 SQL 的应用都应该意识到执行任意 SQL 查询可能存在安全风险。建议根据需要采取预防措施,例如使用受限角色、只读数据库、沙箱等。
设置¶
如果您在 Colab 中打开此 Notebook,您可能需要安装 LlamaIndex 🦙。
In [ ]
已复制!
%pip install llama-index-readers-wikipedia
%pip install llama-index-readers-wikipedia
In [ ]
已复制!
!pip install llama-index
!pip install llama-index
In [ ]
已复制!
# NOTE: This is ONLY necessary in jupyter notebook.
# Details: Jupyter runs an event-loop behind the scenes.
# This results in nested event-loops when we start an event-loop to make async queries.
# This is normally not allowed, we use nest_asyncio to allow it for convenience.
import nest_asyncio
nest_asyncio.apply()
# NOTE: This is ONLY necessary in jupyter notebook. # Details: Jupyter runs an event-loop behind the scenes. # This results in nested event-loops when we start an event-loop to make async queries. # This is normally not allowed, we use nest_asyncio to allow it for convenience. import nest_asyncio nest_asyncio.apply()
In [ ]
已复制!
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import VectorStoreIndex, SQLDatabase
from llama_index.readers.wikipedia import WikipediaReader
import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import VectorStoreIndex, SQLDatabase from llama_index.readers.wikipedia import WikipediaReader
INFO:numexpr.utils:Note: NumExpr detected 12 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8. Note: NumExpr detected 12 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8. INFO:numexpr.utils:NumExpr defaulting to 8 threads. NumExpr defaulting to 8 threads.
/Users/jerryliu/Programming/gpt_index/.venv/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm
创建数据库模式 + 测试数据¶
这里我们介绍一个模拟场景,其中包含 100 个表(太大无法放入提示词中)
In [ ]
已复制!
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
select,
column,
)
from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, select, column, )
In [ ]
已复制!
engine = create_engine("sqlite:///:memory:", future=True)
metadata_obj = MetaData()
engine = create_engine("sqlite:///:memory:", future=True) metadata_obj = MetaData()
In [ ]
已复制!
# create city SQL table
table_name = "city_stats"
city_stats_table = Table(
table_name,
metadata_obj,
Column("city_name", String(16), primary_key=True),
Column("population", Integer),
Column("country", String(16), nullable=False),
)
metadata_obj.create_all(engine)
# create city SQL table table_name = "city_stats" city_stats_table = Table( table_name, metadata_obj, Column("city_name", String(16), primary_key=True), Column("population", Integer), Column("country", String(16), nullable=False), ) metadata_obj.create_all(engine)
In [ ]
已复制!
# print tables
metadata_obj.tables.keys()
# print tables metadata_obj.tables.keys()
Out [ ]
dict_keys(['city_stats'])
我们在 city_stats
表中插入一些测试数据
In [ ]
已复制!
from sqlalchemy import insert
rows = [
{"city_name": "Toronto", "population": 2930000, "country": "Canada"},
{"city_name": "Tokyo", "population": 13960000, "country": "Japan"},
{"city_name": "Berlin", "population": 3645000, "country": "Germany"},
]
for row in rows:
stmt = insert(city_stats_table).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
from sqlalchemy import insert rows = [ {"city_name": "Toronto", "population": 2930000, "country": "Canada"}, {"city_name": "Tokyo", "population": 13960000, "country": "Japan"}, {"city_name": "Berlin", "population": 3645000, "country": "Germany"}, ] for row in rows: stmt = insert(city_stats_table).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt)
In [ ]
已复制!
with engine.connect() as connection:
cursor = connection.exec_driver_sql("SELECT * FROM city_stats")
print(cursor.fetchall())
with engine.connect() as connection: cursor = connection.exec_driver_sql("SELECT * FROM city_stats") print(cursor.fetchall())
[('Toronto', 2930000, 'Canada'), ('Tokyo', 13960000, 'Japan'), ('Berlin', 3645000, 'Germany')]
加载数据¶
我们首先展示如何将 Document 转换为一组 Node,并插入到 DocumentStore 中。
In [ ]
已复制!
# install wikipedia python package
!pip install wikipedia
# install wikipedia python package !pip install wikipedia
Requirement already satisfied: wikipedia in /Users/jerryliu/Programming/gpt_index/.venv/lib/python3.10/site-packages (1.4.0) Requirement already satisfied: requests<3.0.0,>=2.0.0 in /Users/jerryliu/Programming/gpt_index/.venv/lib/python3.10/site-packages (from wikipedia) (2.28.2) Requirement already satisfied: beautifulsoup4 in /Users/jerryliu/Programming/gpt_index/.venv/lib/python3.10/site-packages (from wikipedia) (4.12.2) Requirement already satisfied: idna<4,>=2.5 in /Users/jerryliu/Programming/gpt_index/.venv/lib/python3.10/site-packages (from requests<3.0.0,>=2.0.0->wikipedia) (3.4) Requirement already satisfied: charset-normalizer<4,>=2 in /Users/jerryliu/Programming/gpt_index/.venv/lib/python3.10/site-packages (from requests<3.0.0,>=2.0.0->wikipedia) (3.1.0) Requirement already satisfied: certifi>=2017.4.17 in /Users/jerryliu/Programming/gpt_index/.venv/lib/python3.10/site-packages (from requests<3.0.0,>=2.0.0->wikipedia) (2022.12.7) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /Users/jerryliu/Programming/gpt_index/.venv/lib/python3.10/site-packages (from requests<3.0.0,>=2.0.0->wikipedia) (1.26.15) Requirement already satisfied: soupsieve>1.2 in /Users/jerryliu/Programming/gpt_index/.venv/lib/python3.10/site-packages (from beautifulsoup4->wikipedia) (2.4.1) [notice] A new release of pip available: 22.3.1 -> 23.1.2 [notice] To update, run: pip install --upgrade pip
In [ ]
已复制!
cities = ["Toronto", "Berlin", "Tokyo"]
wiki_docs = WikipediaReader().load_data(pages=cities)
cities = ["Toronto", "Berlin", "Tokyo"] wiki_docs = WikipediaReader().load_data(pages=cities)
构建 SQL 索引¶
In [ ]
已复制!
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
sql_database = SQLDatabase(engine, include_tables=["city_stats"])
In [ ]
已复制!
from llama_index.core.query_engine import NLSQLTableQueryEngine
from llama_index.core.query_engine import NLSQLTableQueryEngine
In [ ]
已复制!
sql_query_engine = NLSQLTableQueryEngine(
sql_database=sql_database,
tables=["city_stats"],
)
sql_query_engine = NLSQLTableQueryEngine( sql_database=sql_database, tables=["city_stats"], )
INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total LLM token usage: 0 tokens > [build_index_from_nodes] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total embedding token usage: 0 tokens > [build_index_from_nodes] Total embedding token usage: 0 tokens
/Users/jerryliu/Programming/gpt_index/.venv/lib/python3.10/site-packages/langchain/sql_database.py:227: UserWarning: This method is deprecated - please use `get_usable_table_names`. warnings.warn(
构建向量索引¶
In [ ]
已复制!
# build a separate vector index per city
# You could also choose to define a single vector index across all docs, and annotate each chunk by metadata
vector_indices = []
for wiki_doc in wiki_docs:
vector_index = VectorStoreIndex.from_documents([wiki_doc])
vector_indices.append(vector_index)
# build a separate vector index per city # You could also choose to define a single vector index across all docs, and annotate each chunk by metadata vector_indices = [] for wiki_doc in wiki_docs: vector_index = VectorStoreIndex.from_documents([wiki_doc]) vector_indices.append(vector_index)
INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total LLM token usage: 0 tokens > [build_index_from_nodes] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total embedding token usage: 20744 tokens > [build_index_from_nodes] Total embedding token usage: 20744 tokens INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total LLM token usage: 0 tokens > [build_index_from_nodes] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total embedding token usage: 21947 tokens > [build_index_from_nodes] Total embedding token usage: 21947 tokens INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total LLM token usage: 0 tokens > [build_index_from_nodes] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [build_index_from_nodes] Total embedding token usage: 12786 tokens > [build_index_from_nodes] Total embedding token usage: 12786 tokens
定义查询引擎,设置为工具¶
In [ ]
已复制!
vector_query_engines = [index.as_query_engine() for index in vector_indices]
vector_query_engines = [index.as_query_engine() for index in vector_indices]
In [ ]
已复制!
from llama_index.core.tools import QueryEngineTool
sql_tool = QueryEngineTool.from_defaults(
query_engine=sql_query_engine,
description=(
"Useful for translating a natural language query into a SQL query over"
" a table containing: city_stats, containing the population/country of"
" each city"
),
)
vector_tools = []
for city, query_engine in zip(cities, vector_query_engines):
vector_tool = QueryEngineTool.from_defaults(
query_engine=query_engine,
description=f"Useful for answering semantic questions about {city}",
)
vector_tools.append(vector_tool)
from llama_index.core.tools import QueryEngineTool sql_tool = QueryEngineTool.from_defaults( query_engine=sql_query_engine, description=( "Useful for translating a natural language query into a SQL query over" " a table containing: city_stats, containing the population/country of" " each city" ), ) vector_tools = [] for city, query_engine in zip(cities, vector_query_engines): vector_tool = QueryEngineTool.from_defaults( query_engine=query_engine, description=f"Useful for answering semantic questions about {city}", ) vector_tools.append(vector_tool)
定义路由器查询引擎¶
In [ ]
已复制!
from llama_index.core.query_engine import RouterQueryEngine
from llama_index.core.selectors import LLMSingleSelector
query_engine = RouterQueryEngine(
selector=LLMSingleSelector.from_defaults(),
query_engine_tools=([sql_tool] + vector_tools),
)
from llama_index.core.query_engine import RouterQueryEngine from llama_index.core.selectors import LLMSingleSelector query_engine = RouterQueryEngine( selector=LLMSingleSelector.from_defaults(), query_engine_tools=([sql_tool] + vector_tools), )
In [ ]
已复制!
response = query_engine.query("Which city has the highest population?")
print(str(response))
response = query_engine.query("Which city has the highest population?") print(str(response))
INFO:llama_index.query_engine.router_query_engine:Selecting query engine 0: Useful for translating a natural language query into a SQL query over a table containing: city_stats, containing the population/country of each city. Selecting query engine 0: Useful for translating a natural language query into a SQL query over a table containing: city_stats, containing the population/country of each city. INFO:llama_index.indices.struct_store.sql_query:> Table desc str: Schema of table city_stats: Table 'city_stats' has columns: city_name (VARCHAR(16)), population (INTEGER), country (VARCHAR(16)) and foreign keys: . > Table desc str: Schema of table city_stats: Table 'city_stats' has columns: city_name (VARCHAR(16)), population (INTEGER), country (VARCHAR(16)) and foreign keys: . INFO:llama_index.token_counter.token_counter:> [query] Total LLM token usage: 347 tokens > [query] Total LLM token usage: 347 tokens INFO:llama_index.token_counter.token_counter:> [query] Total embedding token usage: 0 tokens > [query] Total embedding token usage: 0 tokens Tokyo has the highest population, with 13,960,000 people.
In [ ]
已复制!
response = query_engine.query("Tell me about the historical museums in Berlin")
print(str(response))
response = query_engine.query("Tell me about the historical museums in Berlin") print(str(response))
INFO:llama_index.query_engine.router_query_engine:Selecting query engine 2: Useful for answering semantic questions about Berlin. Selecting query engine 2: Useful for answering semantic questions about Berlin. INFO:llama_index.token_counter.token_counter:> [retrieve] Total LLM token usage: 0 tokens > [retrieve] Total LLM token usage: 0 tokens INFO:llama_index.token_counter.token_counter:> [retrieve] Total embedding token usage: 8 tokens > [retrieve] Total embedding token usage: 8 tokens INFO:llama_index.token_counter.token_counter:> [get_response] Total LLM token usage: 2031 tokens > [get_response] Total LLM token usage: 2031 tokens INFO:llama_index.token_counter.token_counter:> [get_response] Total embedding token usage: 0 tokens > [get_response] Total embedding token usage: 0 tokens Berlin is home to many historical museums, including the Altes Museum, Neues Museum, Alte Nationalgalerie, Pergamon Museum, and Bode Museum, which are all located on Museum Island. The Gemäldegalerie (Painting Gallery) focuses on the paintings of the "old masters" from the 13th to the 18th centuries, while the Neue Nationalgalerie (New National Gallery, built by Ludwig Mies van der Rohe) specializes in 20th-century European painting. The Hamburger Bahnhof, in Moabit, exhibits a major collection of modern and contemporary art. The expanded Deutsches Historisches Museum reopened in the Zeughaus with an overview of German history spanning more than a millennium. The Bauhaus Archive is a museum of 20th-century design from the famous Bauhaus school. Museum Berggruen houses the collection of noted 20th century collector Heinz Berggruen, and features an extensive assortment of works by Picasso, Matisse, Cézanne, and Giacometti, among others. The Kupferstichkabinett Berlin (Museum of Prints and Drawings) is part of the Staatlichen Museen z
In [ ]
已复制!
response = query_engine.query("Which countries are each city from?")
print(str(response))
response = query_engine.query("Which countries are each city from?") print(str(response))
INFO:llama_index.query_engine.router_query_engine:Selecting query engine 0: Useful for translating a natural language query into a SQL query over a table containing: city_stats, containing the population/country of each city. Selecting query engine 0: Useful for translating a natural language query into a SQL query over a table containing: city_stats, containing the population/country of each city. INFO:llama_index.indices.struct_store.sql_query:> Table desc str: Schema of table city_stats: Table 'city_stats' has columns: city_name (VARCHAR(16)), population (INTEGER), country (VARCHAR(16)) and foreign keys: . > Table desc str: Schema of table city_stats: Table 'city_stats' has columns: city_name (VARCHAR(16)), population (INTEGER), country (VARCHAR(16)) and foreign keys: . INFO:llama_index.token_counter.token_counter:> [query] Total LLM token usage: 334 tokens > [query] Total LLM token usage: 334 tokens INFO:llama_index.token_counter.token_counter:> [query] Total embedding token usage: 0 tokens > [query] Total embedding token usage: 0 tokens Toronto is from Canada, Tokyo is from Japan, and Berlin is from Germany.