DashVector 向量存储¶
如果您在 Colab 上打开此 Notebook,您可能需要安装 LlamaIndex 🦙。
In [ ]
已复制!
%pip install llama-index-vector-stores-dashvector
%pip install llama-index-vector-stores-dashvector
In [ ]
已复制!
!pip install llama-index
!pip install llama-index
In [ ]
已复制!
import logging
import sys
import os
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import logging import sys import os logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
创建一个 DashVector Collection¶
In [ ]
已复制!
import dashvector
import dashvector
In [ ]
已复制!
api_key = os.environ["DASHVECTOR_API_KEY"]
client = dashvector.Client(api_key=api_key)
api_key = os.environ["DASHVECTOR_API_KEY"] client = dashvector.Client(api_key=api_key)
In [ ]
已复制!
# dimensions are for text-embedding-ada-002
client.create("llama-demo", dimension=1536)
# dimensions are for text-embedding-ada-002 client.create("llama-demo", dimension=1536)
Out[ ]
{"code": 0, "message": "", "requests_id": "82b969d2-2568-4e18-b0dc-aa159b503c84"}
In [ ]
已复制!
dashvector_collection = client.get("quickstart")
dashvector_collection = client.get("quickstart")
下载数据¶
In [ ]
已复制!
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
!mkdir -p 'data/paul_graham/' !wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
加载文档,构建 DashVectorStore 和 VectorStoreIndex¶
In [ ]
已复制!
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.dashvector import DashVectorStore
from IPython.display import Markdown, display
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.dashvector import DashVectorStore from IPython.display import Markdown, display
INFO:numexpr.utils:Note: NumExpr detected 12 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8. Note: NumExpr detected 12 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8. INFO:numexpr.utils:NumExpr defaulting to 8 threads. NumExpr defaulting to 8 threads.
In [ ]
已复制!
# load documents
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
# load documents documents = SimpleDirectoryReader("./data/paul_graham").load_data()
In [ ]
已复制!
# initialize without metadata filter
from llama_index.core import StorageContext
vector_store = DashVectorStore(dashvector_collection)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
# initialize without metadata filter from llama_index.core import StorageContext vector_store = DashVectorStore(dashvector_collection) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context )
查询索引¶
In [ ]
已复制!
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
# set Logging to DEBUG for more detailed outputs query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?")
In [ ]
已复制!
display(Markdown(f"<b>{response}</b>"))
display(Markdown(f"{response}"))
作者在学校之外进行写作和编程。他们写短篇故事,并尝试在 IBM 1401 计算机上编写程序。他们还构建了一台微型计算机,并开始在其上编程,编写简单的游戏和文字处理器。