Hologres¶
Hologres 是一款一站式实时数据仓库,支持高性能 OLAP 分析和高 QPS 在线服务。
要运行此 Notebook,您需要在云端运行一个 Hologres 实例。您可以通过此链接获取一个。
创建实例后,您可以使用Hologres 控制台找到以下配置:
In [ ]
已复制!
test_hologres_config = {
"host": "<host>",
"port": 80,
"user": "<user>",
"password": "<password>",
"database": "<database>",
"table_name": "<table_name>",
}
test_hologres_config = { "host": "", "port": 80, "user": "", "password": "", "database": "", "table_name": "",
}
顺便说一下,您需要确保已安装 llama-index
In [ ]
已复制!
%pip install llama-index-vector-stores-hologres
%pip install llama-index-vector-stores-hologres
In [ ]
已复制!
!pip install llama-index
!pip install llama-index
导入所需的包依赖:¶
In [ ]
已复制!
from llama_index.core import (
VectorStoreIndex,
SimpleDirectoryReader,
StorageContext,
)
from llama_index.vector_stores.hologres import HologresVectorStore
from llama_index.core import ( VectorStoreIndex, SimpleDirectoryReader, StorageContext, ) from llama_index.vector_stores.hologres import HologresVectorStore
加载一些示例数据:¶
In [ ]
已复制!
!mkdir -p 'data/paul_graham/'
!curl 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -o 'data/paul_graham/paul_graham_essay.txt'
!mkdir -p 'data/paul_graham/' !curl 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -o 'data/paul_graham/paul_graham_essay.txt'
% Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 75042 100 75042 0 0 31985 0 0:00:02 0:00:02 --:--:-- 31987
读取数据:¶
In [ ]
已复制!
# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
print(f"Total documents: {len(documents)}")
print(f"First document, id: {documents[0].doc_id}")
print(f"First document, hash: {documents[0].hash}")
print(
"First document, text"
f" ({len(documents[0].text)} characters):\n{'='*20}\n{documents[0].text[:360]} ..."
)
# 加载文档 documents = SimpleDirectoryReader("./data/paul_graham/").load_data() print(f"总文档数: {len(documents)}") print(f"第一个文档,ID: {documents[0].doc_id}") print(f"第一个文档,哈希: {documents[0].hash}") print( "第一个文档,文本" f" ({len(documents[0].text)} 字符):\n{'='*20}\n{documents[0].text[:360]} ..." )
Total documents: 1 First document, id: 824dafc0-0aa1-4c80-b99c-33895cfc606a First document, hash: 8430b3bdb65ee0a7853463b71e7e1e20beee3a3ce15ef3ec714919f8653b2eb9 First document, text (75014 characters): ==================== What I Worked On February 2021 Before college the two main things I worked on, outside of school, were writing and programming. I didn't write essays. I wrote what beginning writers were supposed to write then, and probably still are: short stories. My stories were awful. They had hardly any plot, just characters with strong feelings, which I imagined ma ...
创建 AnalyticDB 向量存储对象:¶
In [ ]
已复制!
hologres_store = HologresVectorStore.from_param(
host=test_hologres_config["host"],
port=test_hologres_config["port"],
user=test_hologres_config["user"],
password=test_hologres_config["password"],
database=test_hologres_config["database"],
table_name=test_hologres_config["table_name"],
embedding_dimension=1536,
pre_delete_table=True,
)
hologres_store = HologresVectorStore.from_param( host=test_hologres_config["host"], port=test_hologres_config["port"], user=test_hologres_config["user"], password=test_hologres_config["password"], database=test_hologres_config["database"], table_name=test_hologres_config["table_name"], embedding_dimension=1536, pre_delete_table=True, )
从文档构建索引:¶
In [ ]
已复制!
storage_context = StorageContext.from_defaults(vector_store=hologres_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
storage_context = StorageContext.from_defaults(vector_store=hologres_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context )
使用索引进行查询:¶
In [ ]
已复制!
query_engine = index.as_query_engine()
response = query_engine.query("Why did the author choose to work on AI?")
print(response.response)
query_engine = index.as_query_engine() response = query_engine.query("Why did the author choose to work on AI?") print(response.response)
The author was inspired to work on AI due to the influence of a science fiction novel, "The Moon is a Harsh Mistress," which featured an intelligent computer named Mike, and a PBS documentary showcasing Terry Winograd's use of the SHRDLU program. These experiences led the author to believe that creating intelligent machines was an imminent reality and sparked their interest in the field of AI.