OceanBase 向量存储¶
OceanBase 数据库是一个分布式关系型数据库。它完全由蚂蚁集团开发。OceanBase 数据库构建在通用服务器集群上。基于 Paxos 协议及其分布式结构,OceanBase 数据库提供高可用性和线性可扩展性。OceanBase 数据库不依赖于特定的硬件架构。
本笔记本详细介绍了如何在 LlamaIndex 中使用 OceanBase 向量存储功能。
设置¶
In [ ]
已复制!
%pip install llama-index-vector-stores-oceanbase
%pip install llama-index
# choose dashscope as embedding and llm model, your can also use default openai or other model to test
%pip install llama-index-embeddings-dashscope
%pip install llama-index-llms-dashscope
%pip install llama-index-vector-stores-oceanbase %pip install llama-index # choose dashscope as embedding and llm model, your can also use default openai or other model to test %pip install llama-index-embeddings-dashscope %pip install llama-index-llms-dashscope
使用 Docker 部署一个独立的 OceanBase 服务器¶
In [ ]
已复制!
%docker run --name=ob433 -e MODE=slim -p 2881:2881 -d oceanbase/oceanbase-ce:4.3.3.0-100000142024101215
%docker run --name=ob433 -e MODE=slim -p 2881:2881 -d oceanbase/oceanbase-ce:4.3.3.0-100000142024101215
创建 ObVecClient¶
In [ ]
已复制!
from pyobvector import ObVecClient
client = ObVecClient()
client.perform_raw_text_sql(
"ALTER SYSTEM ob_vector_memory_limit_percentage = 30"
)
from pyobvector import ObVecClient client = ObVecClient() client.perform_raw_text_sql( "ALTER SYSTEM ob_vector_memory_limit_percentage = 30" )
配置 DashScope 嵌入模型和 LLM。
In [ ]
已复制!
# set Embbeding model
import os
from llama_index.core import Settings
from llama_index.embeddings.dashscope import DashScopeEmbedding
# Global Settings
Settings.embed_model = DashScopeEmbedding()
# config llm model
from llama_index.llms.dashscope import DashScope, DashScopeGenerationModels
dashscope_llm = DashScope(
model_name=DashScopeGenerationModels.QWEN_MAX,
api_key=os.environ.get("DASHSCOPE_API_KEY", ""),
)
# set Embbeding model import os from llama_index.core import Settings from llama_index.embeddings.dashscope import DashScopeEmbedding # Global Settings Settings.embed_model = DashScopeEmbedding() # config llm model from llama_index.llms.dashscope import DashScope, DashScopeGenerationModels dashscope_llm = DashScope( model_name=DashScopeGenerationModels.QWEN_MAX, api_key=os.environ.get("DASHSCOPE_API_KEY", ""), )
加载文档¶
In [ ]
已复制!
from llama_index.core import (
SimpleDirectoryReader,
load_index_from_storage,
VectorStoreIndex,
StorageContext,
)
from llama_index.vector_stores.oceanbase import OceanBaseVectorStore
from llama_index.core import ( SimpleDirectoryReader, load_index_from_storage, VectorStoreIndex, StorageContext, ) from llama_index.vector_stores.oceanbase import OceanBaseVectorStore
下载数据 & 加载数据
In [ ]
已复制!
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
!mkdir -p 'data/paul_graham/' !wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
In [ ]
已复制!
# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
# load documents documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
In [ ]
已复制!
oceanbase = OceanBaseVectorStore(
client=client,
dim=1536,
drop_old=True,
normalize=True,
)
storage_context = StorageContext.from_defaults(vector_store=oceanbase)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
oceanbase = OceanBaseVectorStore( client=client, dim=1536, drop_old=True, normalize=True, ) storage_context = StorageContext.from_defaults(vector_store=oceanbase) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context )
查询索引¶
In [ ]
已复制!
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine(llm=dashscope_llm)
res = query_engine.query("What did the author do growing up?")
res.response
# set Logging to DEBUG for more detailed outputs query_engine = index.as_query_engine(llm=dashscope_llm) res = query_engine.query("What did the author do growing up?") res.response
Out [ ]
'Growing up, the author worked on two main activities outside of school: writing and programming. They wrote short stories, which they admits were not particularly good, lacking plot but containing characters with strong emotions. They also started programming at a young age, initially on an IBM 1401 computer using an early version of Fortran, though they found it challenging due to the limitations of punch card input and their lack of data to process. Their programming journey真正 took off when microcomputers became available, allowing them to write more interactive programs such as games, a rocket flight predictor, and a simple word processor.'
元数据过滤¶
OceanBase 向量存储支持在查询时进行元数据过滤,格式包括 =
、 >
、<
、!=
、>=
、<=
、in
、not in
、like
、IS NULL
。
In [ ]
已复制!
from llama_index.core.vector_stores import (
MetadataFilters,
MetadataFilter,
)
query_engine = index.as_query_engine(
llm=dashscope_llm,
filters=MetadataFilters(
filters=[
MetadataFilter(key="book", value="paul_graham", operator="!="),
]
),
similarity_top_k=10,
)
res = query_engine.query("What did the author learn?")
res.response
from llama_index.core.vector_stores import ( MetadataFilters, MetadataFilter, ) query_engine = index.as_query_engine( llm=dashscope_llm, filters=MetadataFilters( filters=[ MetadataFilter(key="book", value="paul_graham", operator="!="), ] ), similarity_top_k=10, ) res = query_engine.query("What did the author learn?") res.response
Out [ ]
'Empty Response'
删除文档¶
In [ ]
已复制!
oceanbase.delete(documents[0].doc_id)
query_engine = index.as_query_engine(llm=dashscope_llm)
res = query_engine.query("What did the author do growing up?")
res.response
oceanbase.delete(documents[0].doc_id) query_engine = index.as_query_engine(llm=dashscope_llm) res = query_engine.query("What did the author do growing up?") res.response
Out [ ]
'Empty Response'