pgvecto.rs¶
首先,您可能需要安装依赖项
In [ ]
已复制!
%pip install llama-index-vector-stores-pgvecto-rs
%pip install llama-index-vector-stores-pgvecto-rs
In [ ]
已复制!
%pip install llama-index "pgvecto_rs[sdk]"
%pip install llama-index "pgvecto_rs[sdk]"
然后按照官方文档的建议启动 pgvecto.rs 服务器
In [ ]
已复制!
!docker run --name pgvecto-rs-demo -e POSTGRES_PASSWORD=mysecretpassword -p 5432:5432 -d tensorchord/pgvecto-rs:latest
!docker run --name pgvecto-rs-demo -e POSTGRES_PASSWORD=mysecretpassword -p 5432:5432 -d tensorchord/pgvecto-rs:latest
设置日志记录器。
In [ ]
已复制!
import logging
import os
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import logging import os import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
创建一个 pgvecto_rs 客户端¶
In [ ]
已复制!
from pgvecto_rs.sdk import PGVectoRs
URL = "postgresql+psycopg://{username}:{password}@{host}:{port}/{db_name}".format(
port=os.getenv("DB_PORT", "5432"),
host=os.getenv("DB_HOST", "localhost"),
username=os.getenv("DB_USER", "postgres"),
password=os.getenv("DB_PASS", "mysecretpassword"),
db_name=os.getenv("DB_NAME", "postgres"),
)
client = PGVectoRs(
db_url=URL,
collection_name="example",
dimension=1536, # Using OpenAI’s text-embedding-ada-002
)
from pgvecto_rs.sdk import PGVectoRs URL = "postgresql+psycopg://{username}:{password}@{host}:{port}/{db_name}".format( port=os.getenv("DB_PORT", "5432"), host=os.getenv("DB_HOST", "localhost"), username=os.getenv("DB_USER", "postgres"), password=os.getenv("DB_PASS", "mysecretpassword"), db_name=os.getenv("DB_NAME", "postgres"), ) client = PGVectoRs( db_url=URL, collection_name="example", dimension=1536, # 使用 OpenAI 的 text-embedding-ada-002 )
设置 OpenAI¶
In [ ]
已复制!
import os
os.environ["OPENAI_API_KEY"] = "sk-..."
import os os.environ["OPENAI_API_KEY"] = "sk-..."
加载文档,构建 PGVectoRsStore 和 VectorStoreIndex¶
In [ ]
已复制!
from IPython.display import Markdown, display
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.vector_stores.pgvecto_rs import PGVectoRsStore
from IPython.display import Markdown, display from llama_index.core import SimpleDirectoryReader, VectorStoreIndex from llama_index.vector_stores.pgvecto_rs import PGVectoRsStore
下载数据
In [ ]
已复制!
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
!mkdir -p 'data/paul_graham/' !wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
In [ ]
已复制!
# load documents
documents = SimpleDirectoryReader("./data/paul_graham").load_data()
# 加载文档 documents = SimpleDirectoryReader("./data/paul_graham").load_data()
In [ ]
已复制!
# initialize without metadata filter
from llama_index.core import StorageContext
vector_store = PGVectoRsStore(client=client)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
# 初始化时不带元数据过滤器 from llama_index.core import StorageContext vector_store = PGVectoRsStore(client=client) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context )
查询索引¶
In [ ]
已复制!
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
# 将日志级别设置为 DEBUG 以获取更详细的输出 query_engine = index.as_query_engine() response = query_engine.query("作者从小都做了些什么?")
INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK" HTTP Request: POST https://api.openai.com/v1/embeddings "HTTP/1.1 200 OK" INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK" HTTP Request: POST https://api.openai.com/v1/chat/completions "HTTP/1.1 200 OK"
In [ ]
已复制!
display(Markdown(f"<b>{response}</b>"))
display(Markdown(f"{response}"))
作者从小就开始写作和编程。他们写短篇小说,也尝试在 IBM 1401 计算机上编写程序。后来他们得到了一台微型计算机,并开始更广泛地进行编程,编写简单的游戏和文字处理器。