Weaviate向量存储 - 混合搜索¶
如果您在colab中打开此Notebook,您可能需要安装LlamaIndex 🦙。
In [ ]
已复制!
%pip install llama-index-vector-stores-weaviate
%pip install llama-index-vector-stores-weaviate
In [ ]
已复制!
!pip install llama-index
!pip install llama-index
In [ ]
已复制!
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
import logging import sys logging.basicConfig(stream=sys.stdout, level=logging.INFO) logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
创建Weaviate客户端¶
In [ ]
已复制!
import os
import openai
os.environ["OPENAI_API_KEY"] = ""
openai.api_key = os.environ["OPENAI_API_KEY"]
import os import openai os.environ["OPENAI_API_KEY"] = "" openai.api_key = os.environ["OPENAI_API_KEY"]
In [ ]
已复制!
import weaviate
import weaviate
In [ ]
已复制!
# Connect to cloud instance
cluster_url = ""
api_key = ""
client = weaviate.connect_to_wcs(
cluster_url=cluster_url,
auth_credentials=weaviate.auth.AuthApiKey(api_key),
)
# Connect to local instance
# client = weaviate.connect_to_local()
# Connect to cloud instance cluster_url = "" api_key = "" client = weaviate.connect_to_wcs( cluster_url=cluster_url, auth_credentials=weaviate.auth.AuthApiKey(api_key), ) # Connect to local instance # client = weaviate.connect_to_local()
In [ ]
已复制!
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from llama_index.vector_stores.weaviate import WeaviateVectorStore
from llama_index.core.response.notebook_utils import display_response
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.weaviate import WeaviateVectorStore from llama_index.core.response.notebook_utils import display_response
下载数据¶
In [ ]
已复制!
!mkdir -p 'data/paul_graham/'
!wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
!mkdir -p 'data/paul_graham/' !wget 'https://raw.githubusercontent.com/run-llama/llama_index/main/docs/docs/examples/data/paul_graham/paul_graham_essay.txt' -O 'data/paul_graham/paul_graham_essay.txt'
加载文档¶
In [ ]
已复制!
# load documents
documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
# load documents documents = SimpleDirectoryReader("./data/paul_graham/").load_data()
使用WeaviateVectorStore构建VectorStoreIndex¶
In [ ]
已复制!
from llama_index.core import StorageContext
vector_store = WeaviateVectorStore(weaviate_client=client)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
# NOTE: you may also choose to define a index_name manually.
# index_name = "test_prefix"
# vector_store = WeaviateVectorStore(weaviate_client=client, index_name=index_name)
from llama_index.core import StorageContext vector_store = WeaviateVectorStore(weaviate_client=client) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) # NOTE: you may also choose to define a index_name manually. # index_name = "test_prefix" # vector_store = WeaviateVectorStore(weaviate_client=client, index_name=index_name)
使用默认向量搜索查询索引¶
In [ ]
已复制!
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine(similarity_top_k=2)
response = query_engine.query("What did the author do growing up?")
# set Logging to DEBUG for more detailed outputs query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("What did the author do growing up?")
In [ ]
已复制!
display_response(response)
display_response(response)
使用混合搜索查询索引¶
使用BM25和向量进行混合搜索。
alpha
参数决定权重(alpha = 0 -> BM25,alpha = 1 -> 向量搜索)。
默认情况下,使用alpha=0.75
(非常接近向量搜索)¶
In [ ]
已复制!
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine(
vector_store_query_mode="hybrid", similarity_top_k=2
)
response = query_engine.query(
"What did the author do growing up?",
)
# set Logging to DEBUG for more detailed outputs query_engine = index.as_query_engine( vector_store_query_mode="hybrid", similarity_top_k=2 ) response = query_engine.query( "What did the author do growing up?", )
In [ ]
已复制!
display_response(response)
display_response(response)
设置alpha=0.
以倾向于BM25¶
In [ ]
已复制!
# set Logging to DEBUG for more detailed outputs
query_engine = index.as_query_engine(
vector_store_query_mode="hybrid", similarity_top_k=2, alpha=0.0
)
response = query_engine.query(
"What did the author do growing up?",
)
# set Logging to DEBUG for more detailed outputs query_engine = index.as_query_engine( vector_store_query_mode="hybrid", similarity_top_k=2, alpha=0.0 ) response = query_engine.query( "What did the author do growing up?", )
In [ ]
已复制!
display_response(response)
display_response(response)