函数调用 Agent 的工作流¶
本 notebook 详细介绍了如何从零开始设置 Workflow
来构建函数调用 Agent。
函数调用 Agent 的工作原理是利用支持工具/函数 API 的 LLM(如 OpenAI、Ollama、Anthropic 等)来调用函数和使用工具。
我们的工作流将是有状态的(带记忆),并且能够调用 LLM 来选择工具和处理用户输入消息。
!pip install -U llama-index
import os
os.environ["OPENAI_API_KEY"] = "sk-proj-..."
[可选] 使用 Llamatrace 设置可观测性¶
设置追踪以便可视化工作流中的每个步骤。
由于工作流是异步优先的,这在 notebook 中运行良好。如果您在自己的代码中运行,如果尚未运行异步事件循环,则需要使用 asyncio.run()
来启动一个。
async def main():
<async code>
if __name__ == "__main__":
import asyncio
asyncio.run(main())
from llama_index.core.llms import ChatMessage
from llama_index.core.tools import ToolSelection, ToolOutput
from llama_index.core.workflow import Event
class InputEvent(Event):
input: list[ChatMessage]
class StreamEvent(Event):
delta: str
class ToolCallEvent(Event):
tool_calls: list[ToolSelection]
class FunctionOutputEvent(Event):
output: ToolOutput
from typing import Any, List
from llama_index.core.llms.function_calling import FunctionCallingLLM
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.core.tools.types import BaseTool
from llama_index.core.workflow import (
Context,
Workflow,
StartEvent,
StopEvent,
step,
)
from llama_index.llms.openai import OpenAI
class FuncationCallingAgent(Workflow):
def __init__(
self,
*args: Any,
llm: FunctionCallingLLM | None = None,
tools: List[BaseTool] | None = None,
**kwargs: Any,
) -> None:
super().__init__(*args, **kwargs)
self.tools = tools or []
self.llm = llm or OpenAI()
assert self.llm.metadata.is_function_calling_model
@step
async def prepare_chat_history(
self, ctx: Context, ev: StartEvent
) -> InputEvent:
# clear sources
await ctx.set("sources", [])
# check if memory is setup
memory = await ctx.get("memory", default=None)
if not memory:
memory = ChatMemoryBuffer.from_defaults(llm=self.llm)
# get user input
user_input = ev.input
user_msg = ChatMessage(role="user", content=user_input)
memory.put(user_msg)
# get chat history
chat_history = memory.get()
# update context
await ctx.set("memory", memory)
return InputEvent(input=chat_history)
@step
async def handle_llm_input(
self, ctx: Context, ev: InputEvent
) -> ToolCallEvent | StopEvent:
chat_history = ev.input
# stream the response
response_stream = await self.llm.astream_chat_with_tools(
self.tools, chat_history=chat_history
)
async for response in response_stream:
ctx.write_event_to_stream(StreamEvent(delta=response.delta or ""))
# save the final response, which should have all content
memory = await ctx.get("memory")
memory.put(response.message)
await ctx.set("memory", memory)
# get tool calls
tool_calls = self.llm.get_tool_calls_from_response(
response, error_on_no_tool_call=False
)
if not tool_calls:
sources = await ctx.get("sources", default=[])
return StopEvent(
result={"response": response, "sources": [*sources]}
)
else:
return ToolCallEvent(tool_calls=tool_calls)
@step
async def handle_tool_calls(
self, ctx: Context, ev: ToolCallEvent
) -> InputEvent:
tool_calls = ev.tool_calls
tools_by_name = {tool.metadata.get_name(): tool for tool in self.tools}
tool_msgs = []
sources = await ctx.get("sources", default=[])
# call tools -- safely!
for tool_call in tool_calls:
tool = tools_by_name.get(tool_call.tool_name)
additional_kwargs = {
"tool_call_id": tool_call.tool_id,
"name": tool.metadata.get_name(),
}
if not tool:
tool_msgs.append(
ChatMessage(
role="tool",
content=f"Tool {tool_call.tool_name} does not exist",
additional_kwargs=additional_kwargs,
)
)
continue
try:
tool_output = tool(**tool_call.tool_kwargs)
sources.append(tool_output)
tool_msgs.append(
ChatMessage(
role="tool",
content=tool_output.content,
additional_kwargs=additional_kwargs,
)
)
except Exception as e:
tool_msgs.append(
ChatMessage(
role="tool",
content=f"Encountered error in tool call: {e}",
additional_kwargs=additional_kwargs,
)
)
# update memory
memory = await ctx.get("memory")
for msg in tool_msgs:
memory.put(msg)
await ctx.set("sources", sources)
await ctx.set("memory", memory)
chat_history = memory.get()
return InputEvent(input=chat_history)
就是这样!让我们稍微探索一下我们编写的工作流。
prepare_chat_history()
:这是我们的主要入口点。它负责将用户消息添加到记忆中,并使用记忆获取最新的聊天历史。它返回一个 InputEvent
。
handle_llm_input()
:由 InputEvent
触发,它使用聊天历史和工具来提示 LLM。如果找到工具调用,则发出一个 ToolCallEvent
。否则,我们认为工作流完成并发出一个 StopEvent
。
handle_tool_calls()
:由 ToolCallEvent
触发,它会调用工具并进行错误处理,然后返回工具输出。此事件会触发一个 循环,因为它会发出一个 InputEvent
,将我们带回 handle_llm_input()
。
运行工作流!¶
注意: 使用循环时,我们需要注意运行时长。这里我们将超时设置为 120 秒。
from llama_index.core.tools import FunctionTool
from llama_index.llms.openai import OpenAI
def add(x: int, y: int) -> int:
"""Useful function to add two numbers."""
return x + y
def multiply(x: int, y: int) -> int:
"""Useful function to multiply two numbers."""
return x * y
tools = [
FunctionTool.from_defaults(add),
FunctionTool.from_defaults(multiply),
]
agent = FuncationCallingAgent(
llm=OpenAI(model="gpt-4o-mini"), tools=tools, timeout=120, verbose=True
)
ret = await agent.run(input="Hello!")
Running step prepare_chat_history Step prepare_chat_history produced event InputEvent Running step handle_llm_input Step handle_llm_input produced event StopEvent
print(ret["response"])
assistant: Hello! How can I assist you today?
ret = await agent.run(input="What is (2123 + 2321) * 312?")
Running step prepare_chat_history Step prepare_chat_history produced event InputEvent Running step handle_llm_input Step handle_llm_input produced event ToolCallEvent Running step handle_tool_calls Step handle_tool_calls produced event InputEvent Running step handle_llm_input Step handle_llm_input produced event ToolCallEvent Running step handle_tool_calls Step handle_tool_calls produced event InputEvent Running step handle_llm_input Step handle_llm_input produced event StopEvent
聊天历史¶
默认情况下,工作流会为每次运行创建一个新的 Context
。这意味着聊天历史不会在多次运行之间保留。但是,我们可以将自己的 Context
传递给工作流以保留聊天历史。
from llama_index.core.workflow import Context
ctx = Context(agent)
ret = await agent.run(input="Hello! My name is Logan.", ctx=ctx)
print(ret["response"])
ret = await agent.run(input="What is my name?", ctx=ctx)
print(ret["response"])
Running step prepare_chat_history Step prepare_chat_history produced event InputEvent Running step handle_llm_input Step handle_llm_input produced event StopEvent assistant: Hello, Logan! How can I assist you today? Running step prepare_chat_history Step prepare_chat_history produced event InputEvent Running step handle_llm_input Step handle_llm_input produced event StopEvent assistant: Your name is Logan.
流式处理¶
使用 .run()
方法返回的 handler
,我们还可以访问流式事件。
agent = FuncationCallingAgent(
llm=OpenAI(model="gpt-4o-mini"), tools=tools, timeout=120, verbose=False
)
handler = agent.run(input="Hello! Write me a short story about a cat.")
async for event in handler.stream_events():
if isinstance(event, StreamEvent):
print(event.delta, end="", flush=True)
response = await handler
# print(ret["response"])
Once upon a time in a quaint little village, there lived a curious cat named Whiskers. Whiskers was no ordinary cat; he had a beautiful coat of orange and white fur that shimmered in the sunlight, and his emerald green eyes sparkled with mischief. Every day, Whiskers would explore the village, visiting the bakery for a whiff of freshly baked bread and the flower shop to sniff the colorful blooms. The villagers adored him, often leaving out little treats for their favorite feline. One sunny afternoon, while wandering near the edge of the village, Whiskers stumbled upon a hidden path that led into the woods. His curiosity piqued, he decided to follow the path, which was lined with tall trees and vibrant wildflowers. As he ventured deeper, he heard a soft, melodic sound that seemed to beckon him. Following the enchanting music, Whiskers soon found himself in a clearing where a group of woodland creatures had gathered. They were having a grand celebration, complete with dancing, singing, and a feast of berries and nuts. The animals welcomed Whiskers with open paws, inviting him to join their festivities. Whiskers, delighted by the warmth and joy of his new friends, danced and played until the sun began to set. As the sky turned shades of pink and orange, he realized it was time to return home. The woodland creatures gifted him a small, sparkling acorn as a token of their friendship. From that day on, Whiskers would often visit the clearing, sharing stories of the village and enjoying the company of his woodland friends. He learned that adventure and friendship could be found in the most unexpected places, and he cherished every moment spent in the magical woods. And so, Whiskers continued to live his life filled with curiosity, laughter, and the warmth of friendship, reminding everyone that sometimes, the best adventures are just a whisker away.