跳到内容

元数据提取#

引言#

在许多情况下,特别是对于长文档,文本块可能缺乏必要的上下文,难以将其与其他相似文本块区分开来。

为了解决这个问题,我们使用大型语言模型提取与文档相关的特定上下文信息,以便更好地帮助检索和语言模型区分外观相似的段落。

我们在示例 Notebook 中展示了这一点,并演示了其在处理长文档方面的有效性。

用法#

首先,我们定义一个元数据提取器,它接受一个按顺序处理的特征提取器列表。

然后,我们将它提供给节点解析器,后者会将额外的元数据添加到每个节点。

from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.extractors import (
    SummaryExtractor,
    QuestionsAnsweredExtractor,
    TitleExtractor,
    KeywordExtractor,
)
from llama_index.extractors.entity import EntityExtractor

transformations = [
    SentenceSplitter(),
    TitleExtractor(nodes=5),
    QuestionsAnsweredExtractor(questions=3),
    SummaryExtractor(summaries=["prev", "self"]),
    KeywordExtractor(keywords=10),
    EntityExtractor(prediction_threshold=0.5),
]

然后,我们可以对输入文档或节点运行转换

from llama_index.core.ingestion import IngestionPipeline

pipeline = IngestionPipeline(transformations=transformations)

nodes = pipeline.run(documents=documents)

这里是提取的元数据示例

{'page_label': '2',
 'file_name': '10k-132.pdf',
 'document_title': 'Uber Technologies, Inc. 2019 Annual Report: Revolutionizing Mobility and Logistics Across 69 Countries and 111 Million MAPCs with $65 Billion in Gross Bookings',
 'questions_this_excerpt_can_answer': '\n\n1. How many countries does Uber Technologies, Inc. operate in?\n2. What is the total number of MAPCs served by Uber Technologies, Inc.?\n3. How much gross bookings did Uber Technologies, Inc. generate in 2019?',
 'prev_section_summary': "\n\nThe 2019 Annual Report provides an overview of the key topics and entities that have been important to the organization over the past year. These include financial performance, operational highlights, customer satisfaction, employee engagement, and sustainability initiatives. It also provides an overview of the organization's strategic objectives and goals for the upcoming year.",
 'section_summary': '\nThis section discusses a global tech platform that serves multiple multi-trillion dollar markets with products leveraging core technology and infrastructure. It enables consumers and drivers to tap a button and get a ride or work. The platform has revolutionized personal mobility with ridesharing and is now leveraging its platform to redefine the massive meal delivery and logistics industries. The foundation of the platform is its massive network, leading technology, operational excellence, and product expertise.',
 'excerpt_keywords': '\nRidesharing, Mobility, Meal Delivery, Logistics, Network, Technology, Operational Excellence, Product Expertise, Point A, Point B'}

自定义提取器#

如果提供的提取器不符合您的需求,您还可以像这样定义一个自定义提取器

from llama_index.core.extractors import BaseExtractor


class CustomExtractor(BaseExtractor):
    async def aextract(self, nodes) -> List[Dict]:
        metadata_list = [
            {
                "custom": node.metadata["document_title"]
                + "\n"
                + node.metadata["excerpt_keywords"]
            }
            for node in nodes
        ]
        return metadata_list

extractor.extract() 在底层会自动调用 aextract(),以提供同步和异步入口点。

在一个更高级的示例中,它还可以利用 llm 从节点内容和现有元数据中提取特征。有关更多详细信息,请参考提供的元数据提取器的源代码

模块#

您将在下方找到各种元数据提取器的指南和教程。