聊天存储#
聊天存储作为一个中心化接口,用于存储您的聊天历史。聊天历史与其他存储格式不同,因为消息的顺序对于维持完整的对话至关重要。
聊天存储可以按键(例如 user_ids
或其他唯一的标识字符串)组织聊天消息序列,并处理 delete
、insert
和 get
操作。
SimpleChatStore#
最基本的聊天存储是 SimpleChatStore
,它将消息存储在内存中,可以保存到磁盘/从磁盘加载,或者可以序列化后存储到其他地方。
通常,您会实例化一个聊天存储并将其提供给一个记忆模块。如果未提供,使用聊天存储的记忆模块将默认使用 SimpleChatStore
。
from llama_index.core.storage.chat_store import SimpleChatStore
from llama_index.core.memory import ChatMemoryBuffer
chat_store = SimpleChatStore()
chat_memory = ChatMemoryBuffer.from_defaults(
token_limit=3000,
chat_store=chat_store,
chat_store_key="user1",
)
创建记忆后,您可以将其包含在代理或聊天引擎中
agent = OpenAIAgent.from_tools(tools, memory=memory)
# OR
chat_engine = index.as_chat_engine(memory=memory)
要保存聊天存储以便将来使用,您可以保存到磁盘/从磁盘加载
chat_store.persist(persist_path="chat_store.json")
loaded_chat_store = SimpleChatStore.from_persist_path(
persist_path="chat_store.json"
)
或者您可以转换为字符串/从字符串转换,在此过程中将字符串保存到其他地方
chat_store_string = chat_store.json()
loaded_chat_store = SimpleChatStore.parse_raw(chat_store_string)
UpstashChatStore#
使用 UpstashChatStore
,您可以使用 Upstash Redis 远程存储您的聊天历史,Upstash Redis 提供无服务器的 Redis 解决方案,非常适合需要可扩展和高效聊天存储的应用。此聊天存储支持同步和异步操作。
安装#
pip install llama-index-storage-chat-store-upstash
用法#
from llama_index.storage.chat_store.upstash import UpstashChatStore
from llama_index.core.memory import ChatMemoryBuffer
chat_store = UpstashChatStore(
redis_url="YOUR_UPSTASH_REDIS_URL",
redis_token="YOUR_UPSTASH_REDIS_TOKEN",
ttl=300, # Optional: Time to live in seconds
)
chat_memory = ChatMemoryBuffer.from_defaults(
token_limit=3000,
chat_store=chat_store,
chat_store_key="user1",
)
UpstashChatStore 支持同步和异步操作。以下是使用异步方法的示例
import asyncio
from llama_index.core.llms import ChatMessage
async def main():
# Add messages
messages = [
ChatMessage(content="Hello", role="user"),
ChatMessage(content="Hi there!", role="assistant"),
]
await chat_store.async_set_messages("conversation1", messages)
# Retrieve messages
retrieved_messages = await chat_store.async_get_messages("conversation1")
print(retrieved_messages)
# Delete last message
deleted_message = await chat_store.async_delete_last_message(
"conversation1"
)
print(f"Deleted message: {deleted_message}")
asyncio.run(main())
RedisChatStore#
使用 RedisChatStore
,您可以远程存储您的聊天历史,无需担心手动持久化和加载聊天历史。
from llama_index.storage.chat_store.redis import RedisChatStore
from llama_index.core.memory import ChatMemoryBuffer
chat_store = RedisChatStore(redis_url="redis://localhost:6379", ttl=300)
chat_memory = ChatMemoryBuffer.from_defaults(
token_limit=3000,
chat_store=chat_store,
chat_store_key="user1",
)
AzureChatStore#
使用 AzureChatStore
,您可以将聊天历史远程存储在 Azure 表存储或 CosmosDB 中,无需担心手动持久化和加载聊天历史。
pip install llama-index
pip install llama-index-llms-azure-openai
pip install llama-index-storage-chat-store-azure
from llama_index.core.chat_engine import SimpleChatEngine
from llama_index.core.memory import ChatMemoryBuffer
from llama_index.storage.chat_store.azure import AzureChatStore
chat_store = AzureChatStore.from_account_and_key(
account_name="",
account_key="",
chat_table_name="ChatUser",
)
memory = ChatMemoryBuffer.from_defaults(
token_limit=3000,
chat_store=chat_store,
chat_store_key="conversation1",
)
chat_engine = SimpleChatEngine(
memory=memory, llm=Settings.llm, prefix_messages=[]
)
response = chat_engine.chat("Hello.")
DynamoDBChatStore#
使用 DynamoDBChatStore
,您可以将聊天历史存储在 AWS DynamoDB 中。
安装#
pip install llama-index-storage-chat-store-dynamodb
用法#
请确保您已创建一个具有适当模式的 DynamoDB 表。默认情况下,示例如下:
import boto3
# Get the service resource.
dynamodb = boto3.resource("dynamodb")
# Create the DynamoDB table.
table = dynamodb.create_table(
TableName="EXAMPLE_TABLE",
KeySchema=[{"AttributeName": "SessionId", "KeyType": "HASH"}],
AttributeDefinitions=[
{"AttributeName": "SessionId", "AttributeType": "S"}
],
BillingMode="PAY_PER_REQUEST",
)
然后,您可以使用 DynamoDBChatStore
类来持久化和检索聊天历史。
import os
from llama_index.core.llms import ChatMessage, MessageRole
from llama_index.storage.chat_store.dynamodb.base import DynamoDBChatStore
# Initialize DynamoDB chat store
chat_store = DynamoDBChatStore(
table_name="EXAMPLE_TABLE", profile_name=os.getenv("AWS_PROFILE")
)
# A chat history, which doesn't exist yet, returns an empty array.
print(chat_store.get_messages("123"))
# >>> []
# Initializing a chat history with a key of "SessionID = 123"
messages = [
ChatMessage(role=MessageRole.USER, content="Who are you?"),
ChatMessage(
role=MessageRole.ASSISTANT, content="I am your helpful AI assistant."
),
]
chat_store.set_messages(key="123", messages=messages)
print(chat_store.get_messages("123"))
# >>> [ChatMessage(role=<MessageRole.USER: 'user'>, content='Who are you?', additional_kwargs={}),
# ChatMessage(role=<MessageRole.ASSISTANT: 'assistant'>, content='I am your helpful AI assistant.', additional_kwargs={})]]
# Appending a message to an existing chat history
message = ChatMessage(role=MessageRole.USER, content="What can you do?")
chat_store.add_message(key="123", message=message)
print(chat_store.get_messages("123"))
# >>> [ChatMessage(role=<MessageRole.USER: 'user'>, content='Who are you?', additional_kwargs={}),
# ChatMessage(role=<MessageRole.ASSISTANT: 'assistant'>, content='I am your helpful AI assistant.', additional_kwargs={})],
# ChatMessage(role=<MessageRole.USER: 'user'>, content='What can you do?', additional_kwargs={})]
PostgresChatStore#
使用 PostgresChatStore
,您可以远程存储您的聊天历史,无需担心手动持久化和加载聊天历史。
from llama_index.storage.chat_store.postgres import PostgresChatStore
from llama_index.core.memory import ChatMemoryBuffer
chat_store = PostgresChatStore.from_uri(
uri="postgresql+asyncpg://postgres:[email protected]:5432/database",
)
chat_memory = ChatMemoryBuffer.from_defaults(
token_limit=3000,
chat_store=chat_store,
chat_store_key="user1",
)
TablestoreChatStore#
使用 TablestoreChatStore
,您可以远程存储您的聊天历史,无需担心手动持久化和加载聊天历史。
安装#
pip install llama-index-storage-chat-store-tablestore
用法#
from llama_index.storage.chat_store.tablestore import TablestoreChatStore
from llama_index.core.memory import ChatMemoryBuffer
# 1. create tablestore vector store
chat_store = TablestoreChatStore(
endpoint="<end_point>",
instance_name="<instance_name>",
access_key_id="<access_key_id>",
access_key_secret="<access_key_secret>",
)
# You need to create a table for the first use
chat_store.create_table_if_not_exist()
chat_memory = ChatMemoryBuffer.from_defaults(
token_limit=3000,
chat_store=chat_store,
chat_store_key="user1",
)
Google AlloyDB ChatStore#
使用 AlloyDBChatStore
,您可以将聊天历史存储在 AlloyDB 中,无需担心手动持久化和加载聊天历史。
本教程演示了同步接口。所有同步方法都有对应的异步方法。
安装#
pip install llama-index
pip install llama-index-alloydb-pg
pip install llama-index-llms-vertex
用法#
from llama_index.core.chat_engine import SimpleChatEngine
from llama_index.core.memory import ChatMemoryBuffer
from llama_index_alloydb_pg import AlloyDBChatStore, AlloyDBEngine
from llama_index.llms.vertex import Vertex
import asyncio
# Replace with your own AlloyDB info
engine = AlloyDBEngine.from_instance(
project_id=PROJECT_ID,
region=REGION,
cluster=CLUSTER,
instance=INSTANCE,
database=DATABASE,
user=USER,
password=PASSWORD,
)
engine.init_chat_store_table(table_name=TABLE_NAME)
chat_store = AlloyDBChatStore.create_sync(
engine=engine,
table_name=TABLE_NAME,
)
memory = ChatMemoryBuffer.from_defaults(
token_limit=3000,
chat_store=chat_store,
chat_store_key="user1",
)
llm = Vertex(model="gemini-1.5-flash-002", project=PROJECT_ID)
chat_engine = SimpleChatEngine(memory=memory, llm=llm, prefix_messages=[])
response = chat_engine.chat("Hello.")
print(response)
Google Cloud SQL for PostgreSQL ChatStore#
使用 PostgresChatStore
,您可以将聊天历史存储在 Cloud SQL for Postgres 中,无需担心手动持久化和加载聊天历史。
本教程演示了同步接口。所有同步方法都有对应的异步方法。
安装#
pip install llama-index
pip install llama-index-cloud-sql-pg
pip install llama-index-llms-vertex
用法#
from llama_index.core.chat_engine import SimpleChatEngine
from llama_index.core.memory import ChatMemoryBuffer
from llama_index_cloud_sql_pg import PostgresChatStore, PostgresEngine
from llama_index.llms.vertex import Vertex
import asyncio
# Replace with your own Cloud SQL info
engine = PostgresEngine.from_instance(
project_id=PROJECT_ID,
region=REGION,
instance=INSTANCE,
database=DATABASE,
user=USER,
password=PASSWORD,
)
engine.init_chat_store_table(table_name=TABLE_NAME)
chat_store = PostgresChatStore.create_sync(
engine=engine,
table_name=TABLE_NAME,
)
memory = ChatMemoryBuffer.from_defaults(
token_limit=3000,
chat_store=chat_store,
chat_store_key="user1",
)
llm = Vertex(model="gemini-1.5-flash-002", project=PROJECT_ID)
chat_engine = SimpleChatEngine(memory=memory, llm=llm, prefix_messages=[])
response = chat_engine.chat("Hello.")
print(response)